Comparison of the effects of preservation methods on structural, biological, and mechanical properties of the human amniotic membrane for medical applications.

Amniotic membrane Cryopreservation Freeze-drying Fresh tissue Preservation methods

Journal

Cell and tissue banking
ISSN: 1573-6814
Titre abrégé: Cell Tissue Bank
Pays: Netherlands
ID NLM: 100965121

Informations de publication

Date de publication:
15 Oct 2023
Historique:
received: 17 08 2023
accepted: 20 09 2023
medline: 16 10 2023
pubmed: 16 10 2023
entrez: 15 10 2023
Statut: aheadofprint

Résumé

Amniotic membrane (AM), the innermost layer of the placenta, is an exceptionally effective biomaterial with divers applications in clinical medicine. It possesses various biological functions, including scar reduction, anti-inflammatory properties, support for epithelialization, as well as anti-microbial, anti-fibrotic and angio-modulatory effects. Furthermore, its abundant availability, cost-effectiveness, and ethical acceptability make it a compelling biomaterial in the field of medicine. Given the potential unavailability of fresh tissue when needed, the preservation of AM is crucial to ensure a readily accessible and continuous supply for clinical use. However, preserving the properties of AM presents a significant challenge. Therefore, the establishment of standardized protocols for the collection and preservation of AM is vital to ensure optimal tissue quality and enhance patient safety. Various preservation methods, such as cryopreservation, lyophilization, and air-drying, have been employed over the years. However, identifying a preservation method that effectively safeguards AM properties remains an ongoing endeavor. This article aims to review and discuss different sterilization and preservation procedures for AM, as well as their impacts on its histological, physical, and biochemical characteristics.

Identifiants

pubmed: 37840108
doi: 10.1007/s10561-023-10114-z
pii: 10.1007/s10561-023-10114-z
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Ab Hamid SS, Zahari NK, Yusof N, Hassan A (2014) Scanning electron microscopic assessment on surface morphology of preserved human amniotic membrane after gamma sterilisation. Cell Tissue Bank 15:15–24
pubmed: 23187886 doi: 10.1007/s10561-012-9353-x
Adds PJ, Hunt CJ, Dart JK (2001) Amniotic membrane grafts, “fresh” or frozen? A clinical and in vitro comparison. Br J Ophthalmol 85:905–907
pubmed: 11466241 pmcid: 1724096 doi: 10.1136/bjo.85.8.905
Agakidou E, Agakidis C, Kontou A, Chotas W, Sarafidis K (2022) Antimicrobial peptides in early-life host defense, perinatal infections, and necrotizing enterocolitis—An update. J Clin Med 11:5074
pubmed: 36079001 pmcid: 9457252 doi: 10.3390/jcm11175074
Alizadeh E, Orlando TM, Sanche L (2015) Biomolecular damage induced by ionizing radiation: the direct and indirect effects of low-energy electrons on DNA. Annu Rev Phys Chem 66:379–398
pubmed: 25580626 doi: 10.1146/annurev-physchem-040513-103605
Allen CL et al (2013) Augmented dried versus cryopreserved amniotic membrane as an ocular surface dressing. PLoS ONE 8:e78441
pubmed: 24205233 pmcid: 3813584 doi: 10.1371/journal.pone.0078441
Arai N, Tsuno H, Okabe M, Yoshida T, Koike C, Noguchi M, Nikaido T (2012) Clinical application of a hyperdry amniotic membrane on surgical defects of the oral mucosa. J Oral Maxillofac Surg 70:2221–2228
pubmed: 22197005 doi: 10.1016/j.joms.2011.09.033
Ashraf NN, Siyal NA, Sultan S, Adhi MI (2015) Comparison of efficacy of storage of amniotic membrane at-20 and-80 degrees centigrade. J Coll Physicians Surg Pak JCPSP 25:264–267
pubmed: 25899191
Babajani A, Manzari-Tavakoli A, Jamshidi E, Tarasi R, Niknejad H (2022) Anti-cancer effects of human placenta-derived amniotic epithelial stem cells loaded with paclitaxel on cancer cells. Sci Rep 12:18148
pubmed: 36307463 pmcid: 9616866 doi: 10.1038/s41598-022-22562-w
Bernabé-García Á, Liarte S, Moraleda JM, Castellanos G, Nicolás FJ (2017) Amniotic membrane promotes focal adhesion remodeling to stimulate cell migration. Sci Rep 7:15262
pubmed: 29127427 pmcid: 5681678 doi: 10.1038/s41598-017-15509-z
Bhushan KS, Singh G, Chauhan G, Prakash S (2015) Amniotic membrane and its structure, features and uses in dentistry–a brief review. Int J Adv Res 3:354–360
Chun BY, Kim HK, Shin JP (2013) Dried human amniotic membrane does not alleviate inflammation and fibrosis in experimental strabismus surgery. J Ophthalmol. https://doi.org/10.1155/2013/369126
doi: 10.1155/2013/369126 pubmed: 23864935 pmcid: 3705876
Cirman T, Beltram M, Schollmayer P, Rožman P, Kreft ME (2014) Amniotic membrane properties and current practice of amniotic membrane use in ophthalmology in Slovenia. Cell Tissue Bank 15:177–192
pubmed: 24352631 doi: 10.1007/s10561-013-9417-6
Cooke M, Tan E, Mandrycky C, He H, O’Connell J, Tseng S (2014) Comparison of cryopreserved amniotic membrane and umbilical cord tissue with dehydrated amniotic membrane/chorion tissue. J Wound Care 23:465–476
pubmed: 25296347 doi: 10.12968/jowc.2014.23.10.465
Crowe JH, Crowe LM, Oliver AE, Tsvetkova N, Wolkers W, Tablin F (2001) The trehalose myth revisited: introduction to a symposium on stabilization of cells in the dry state. Cryobiology 43:89–105
pubmed: 11846464 doi: 10.1006/cryo.2001.2353
de Oliveira Moraes JTG, Costa MM, Alves PCS, Sant’Anna LB (2021) Effects of preservation methods in the composition of the placental and reflected regions of the human amniotic membrane. Cells Tissues Organs 210:66–76
doi: 10.1159/000515448
Dehghani M, Azarpira N, Karimi VM, Mossayebi H, Esfandiari E (2017) Grafting with cryopreserved amniotic membrane versus conservative wound care in treatment of pressure ulcers: a randomized clinical trial. Bull Emerg Trauma 5:249
pubmed: 29177171 pmcid: 5694597 doi: 10.18869/acadpub.beat.5.4.452
Deihim T, Yazdanpanah G, Niknejad H (2016) The effect of lyophilization on light transmission of amniotic membrane: a comparison with rabbit cornea. J Kerman Univ Med Sci 23:308–320
Díaz-Prado S et al (2010) Multilineage differentiation potential of cells isolated from the human amniotic membrane. J Cell Biochem 111:846–857
pubmed: 20665539 doi: 10.1002/jcb.22769
Díaz-Prado S et al (2011) Human amniotic membrane as an alternative source of stem cells for regenerative medicine. Differentiation 81:162–171
pubmed: 21339039 doi: 10.1016/j.diff.2011.01.005
Dua HS (1999) Amniotic membrane transplantation. Br J Ophthalmol 83:748–752
pubmed: 10340988 pmcid: 1723092 doi: 10.1136/bjo.83.6.748
Dua HS, Gomes JA, King AJ, Maharajan VS (2004) The amniotic membrane in ophthalmology. Surv Ophthalmol 49:51–77
pubmed: 14711440 doi: 10.1016/j.survophthal.2003.10.004
Duan-Arnold Y, Uveges TE, Gyurdieva A, Johnson A, Danilkovitch A (2015) Angiogenic potential of cryopreserved amniotic membrane is enhanced through retention of all tissue components in their native state. Adv Wound Care 4:513–522
doi: 10.1089/wound.2015.0638
Fahy GM, Wowk B (2015) Principles of cryopreservation by vitrification. In: Wolkers WF, Oldenhof H (eds) Cryopreservation and freeze-drying protocols. Springer, New York, pp 21–82
doi: 10.1007/978-1-4939-2193-5_2
Fahy GM, Wowk B (2021) Principles of ice-free cryopreservation by vitrification. In: Wolkers WF, Oldenhof H (eds) Cryopreservation and freeze-drying protocols. Springer, New York, pp 27–97
doi: 10.1007/978-1-0716-0783-1_2
Fairbairn N, Randolph M, Redmond R (2014) The clinical applications of human amnion in plastic surgery. J Plast Reconstr Aesthet Surg 67:662–675
pubmed: 24560801 doi: 10.1016/j.bjps.2014.01.031
Farhadihosseinabadi B et al (2018) Amniotic membrane and its epithelial and mesenchymal stem cells as an appropriate source for skin tissue engineering and regenerative medicine. Artif Cells Nanomed Biotechnol 46:1–10
doi: 10.1080/21691401.2018.1458730
Fujisato T, Tomihata K, Tabata Y, Iwamoto Y, Burczak K, Ikada Y (1999) Cross-linking of amniotic membranes. J Biomater Sci Polym Ed 10:1171–1181
pubmed: 10606034 doi: 10.1163/156856299X00829
Füst Á et al (2012) Both freshly prepared and frozen-stored amniotic membrane cells express the complement inhibitor CD59. Sci World J. https://doi.org/10.1100/2012/815615
doi: 10.1100/2012/815615
Garrido M et al (2018) Transplantation of human amniotic membrane over the liver surface reduces hepatic fibrosis in a cholestatic model in young rats. Stem Cells Int 2018:1–9
doi: 10.1155/2018/6169546
Georgiadis NS, Ziakas NG, Boboridis KG, Terzidou C, Mikropoulos DG (2008) Cryopreserved amniotic membrane transplantation for the management of symptomatic bullous keratopathy. Clin Exp Ophthalmol 36:130–135
pubmed: 18352868 doi: 10.1111/j.1442-9071.2008.01696.x
Gholipourmalekabadi M et al (2016) Decellularized human amniotic membrane: How viable is it as a delivery system for human adipose tissue-derived stromal cells? Cell Prolif 49:115–121
pubmed: 26840647 pmcid: 6496672 doi: 10.1111/cpr.12240
Gindraux F et al (2013) Human amniotic membrane: clinical uses, patents and marketed products. Recent Patents Regen Med 3:193–214
Grzywocz Z et al (2014) Growth factors and their receptors derived from human amniotic cells in vitro. Folia Histochem Cytobiol 52:163–170
pubmed: 25308731 doi: 10.5603/FHC.2014.0019
Gupta A, Kedige SD, Jain K (2015) Amnion and chorion membranes: potential stem cell reservoir with wide applications in periodontics. Int J Biomater. https://doi.org/10.1155/2018/6169546
doi: 10.1155/2018/6169546 pubmed: 26770199 pmcid: 4684856
Hanselman AE, Tidwell JE, Santrock RD (2015) Cryopreserved human amniotic membrane injection for plantar fasciitis a randomized, controlled, double-blind pilot study. Foot Ankle Int 36:151–158
pubmed: 25249320 doi: 10.1177/1071100714552824
Hennerbichler S et al (2007) The influence of various storage conditions on cell viability in amniotic membrane. Cell Tissue Bank 8:1–8
pubmed: 16807768 doi: 10.1007/s10561-006-9002-3
Ilancheran S, Moodley Y, Manuelpillai U (2009) Human fetal membranes: A source of stem cells for tissue regeneration and repair? Placenta 30:2–10
pubmed: 18995896 doi: 10.1016/j.placenta.2008.09.009
Insausti CL (2010) Amniotic membrane induces epithelialization in massive posttraumatic wounds. Wound Repair Regen 18:368–377
pubmed: 20636551 doi: 10.1111/j.1524-475X.2010.00604.x
Jafari A, Rezaei-Tavirani M, Farhadihosseinabadi B, Zali H, Niknejad H (2021a) Human amniotic mesenchymal stem cells to promote/suppress cancer: two sides of the same coin. Stem Cell Res Ther 12:1–11
doi: 10.1186/s13287-021-02196-x
Jafari A, Rezaei-Tavirani M, Niknejad H, Zali H (2021b) Tumor targeting by conditioned medium derived from human amniotic membrane: new insight in breast cancer therapy. Technol Cancer Res Treat 20:15330338211036318
pubmed: 34402329 pmcid: 8375331 doi: 10.1177/15330338211036318
Jafari A et al (2023) Antiproliferative and apoptotic effects of conditioned medium released from human amniotic epithelial stem cells on breast and cervical cancer cells. Int J Immunopathol Pharmacol 37:03946320221150712
pubmed: 36638388 pmcid: 9841833 doi: 10.1177/03946320221150712
Jang TH et al (2017) Cryopreservation and its clinical applications. Integr Med Res 6:12–18
pubmed: 28462139 pmcid: 5395684 doi: 10.1016/j.imr.2016.12.001
Janz FL et al (2012) Evaluation of distinct freezing methods and cryoprotectants for human amniotic fluid stem cells cryopreservation. BioMed Res Int. https://doi.org/10.1155/2012/649353
doi: 10.1155/2012/649353
Jiao H, Guan F, Yang B, Li J, Song L, Hu X, Du Y (2012) Human amniotic membrane derived-mesenchymal stem cells induce C6 glioma apoptosis in vivo through the Bcl-2/caspase pathways. Mol Biol Rep 39:467–473
pubmed: 21556762 doi: 10.1007/s11033-011-0760-z
Joyce EM, Moore JJ, Sacks MS (2009) Biomechanics of the fetal membrane prior to mechanical failure: review and implications. Eur J Obstet Gynecol 144:S121–S127
doi: 10.1016/j.ejogrb.2009.02.014
Kakabadze Z (2016) Clinical application of decellularized and lyophilized human amnion/chorion membrane grafts for closing post-laryngectomy pharyngocutaneous fistulas. J Surg Oncol 113(5):538–543
pubmed: 26791912 pmcid: 5396262 doi: 10.1002/jso.24163
Kakavand M, Yazdanpanah G, Ahmadiani A, Niknejad H (2017) Blood compatibility of human amniotic membrane compared with heparin-coated ePTFE for vascular tissue engineering. J Tissue Eng Regen Med 11:1701–1709
pubmed: 26190586 doi: 10.1002/term.2064
Kar I, Singh A, Mohapatra P, Mohanty P, Misra S (2014) Repair of oral mucosal defects with cryopreserved human amniotic membrane grafts: prospective clinical study. Int J Oral Maxillofac Surg 43:1339–1344
pubmed: 25132569 doi: 10.1016/j.ijom.2014.07.018
Kesting MR, Wolff K-D, Nobis CP, Rohleder NH (2014) Amniotic membrane in oral and maxillofacial surgery. Oral Maxillofac Surg 18:153–164
pubmed: 23242942 doi: 10.1007/s10006-012-0382-1
Khademi B, Bahranifard H, Azarpira N, Behboodi E (2013) Clinical application of amniotic membrane as a biologic dressing in oral cavity and pharyngeal defects after tumor resection. Arch Iran Med 16(9):503–506
pubmed: 23981151
Kikuchi M, Feng Z, Kosawada T, Sato D, Nakamura T, Umezu M (2016) Stress relaxation and stress–strain characteristics of porcine amniotic membrane. Biomed Mater Eng 27:603–611
pubmed: 28234244
Kim YM, Gupta BK (2003) 2-Octyl cyanoacrylate adhesive for conjunctival wound closure in rabbits. J Pediatr Ophthalmol Strabismus 40:152–155
pubmed: 12795434 doi: 10.3928/0191-3913-20030501-09
Kim JC, Tseng S (1995a) Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea 14:473–484
pubmed: 8536460 doi: 10.1097/00003226-199509000-00006
Kim JC, Tseng SC (1995b) The effects on inhibition of corneal neovascularization after human amniotic membrane transplantation in severely damaged rabbit corneas. Korean J Ophthalmol 9:32–46
pubmed: 7674551 doi: 10.3341/kjo.1995.9.1.32
Kim J et al (2007) Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning Stem Cells 9:581–594
pubmed: 18154518 doi: 10.1089/clo.2007.0027
Kitagawa K et al (2009) A hyperdry amniotic membrane patch using a tissue adhesive for corneal perforations and bleb leaks. Am J Ophthalmol 148:383–389
pubmed: 19464670 doi: 10.1016/j.ajo.2009.03.030
Kitagawa K, Okabe M, Yanagisawa S, Zhang X-Y, Nikaido T, Hayashi A (2011) Use of a hyperdried cross-linked amniotic membrane as initial therapy for corneal perforations. Jpn J Ophthalmol 55:16–21
pubmed: 21331687 doi: 10.1007/s10384-010-0903-0
Koike C et al (2014) Characterization of amniotic stem cells. Cell Reprogram (formerly “cloning Stem Cells") 16:298–305
Koizumi N et al (2000) Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res 20:173–177
pubmed: 10694891 doi: 10.1076/0271-3683(200003)2031-9FT173
Kubo M, Sonoda Y, Muramatsu R, Usui M (2001) Immunogenicity of human amniotic membrane in experimental xenotransplantation. Invest Ophthalmol vis Sci 42:1539–1546
pubmed: 11381058
Lagares M et al (2009) Addition of ficoll and disaccharides to vitrification solutions improve in vitro viability of vitrified equine embryos. CryoLetters 30:408–413
pubmed: 20309496
Lai D, Chen H, Lin L, Huang Y, Tsai C, Lai DR (1995) Clinical evaluation of different treatment methods for oral submucous fibrosis. A 10-year experience with 150 cases. J Oral Pathol Med 24:402–406
pubmed: 8537913 doi: 10.1111/j.1600-0714.1995.tb01209.x
Lamon M et al (2022) Cryopreservation of human amniotic membrane for ocular surface reconstruction: a comparison between protocols. Cell Tissue Bank 23:851–861
pubmed: 35338396 doi: 10.1007/s10561-022-10002-y
Lange-Consiglio A et al (2019) Antimicrobial effects of conditioned medium from amniotic progenitor cells in vitro and in vivo: toward tissue regenerative therapies for bovine mastitis. Front Vet Sci 6:443
pubmed: 31921904 pmcid: 6930869 doi: 10.3389/fvets.2019.00443
Laranjo M (2015) Preservation of amniotic membrane. In: Mamede A, Botelho M (eds) Amniotic membrane. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-9975-1_13
doi: 10.1007/978-94-017-9975-1_13
Leal-Marin S et al (2021) Human amniotic membrane: a review on tissue engineering, application, and storage. J Biomed Mater Res B Appl Biomater 109:1198–1215
pubmed: 33319484 doi: 10.1002/jbm.b.34782
Lee S-H, Tseng SC (1997) Amniotic membrane transplantation for persistent epithelial defects with ulceration. Am J Ophthalmol 123:303–312
pubmed: 9063239 doi: 10.1016/S0002-9394(14)70125-4
Lei J, Priddy LB, Lim JJ, Koob TJ (2017) Dehydrated human amnion/chorion membrane (DHACM) allografts as a therapy for orthopedic tissue repair. Tech Orthop 32:149–157
doi: 10.1097/BTO.0000000000000229
Liang W, Ferrara N (2016) The complex role of neutrophils in tumor angiogenesis and metastasis. Cancer Immunol Res 4:83–91
pubmed: 26839309 doi: 10.1158/2326-6066.CIR-15-0313
Libera RD et al (2008) Assessment of the use of cryopreserved x freeze-dried amniotic membrane (AM) for reconstruction of ocular surface in rabbit model. Arq Bras Oftalmol 71:669–673
pubmed: 19039461 doi: 10.1590/S0004-27492008000500011
Lim LS, Poh RW, Riau AK, Beuerman RW, Tan D, Mehta JS (2010) Biological and ultrastructural properties of acelagraft, a freeze-dried γ-irradiated human amniotic membrane. Arch Ophthalmol 128:1303–1310
pubmed: 20938000 doi: 10.1001/archophthalmol.2010.222
Ma DH-K, Lai J-Y, Cheng H-Y, Tsai C-C, Yeh L-K (2010) Carbodiimide cross-linked amniotic membranes for cultivation of limbal epithelial cells. Biomaterials 31:6647–6658
pubmed: 20541801 doi: 10.1016/j.biomaterials.2010.05.034
Magatti M et al (2015) Human amniotic membrane-derived mesenchymal and epithelial cells exert different effects on monocyte-derived dendritic cell differentiation and function. Cell Transplant 24:1733–1752
pubmed: 25259480 doi: 10.3727/096368914X684033
Mahdy RA, Nada WM, Almasalamy SM, Anany HA, Almasary AM (2010) A freeze-dried (lyophilized) amniotic membrane transplantation with mitomycin C and trabeculectomy for pediatric glaucoma. Cutan Ocul Toxicol 29:164–170
pubmed: 20441414 doi: 10.3109/15569521003775005
Mamede AC, Botelho MF (2015) Amniotic membrane. From structure and functions to clinical applications. Cell Tissue Res 2012:349
Mamede A, Carvalho M, Abrantes A, Laranjo M, Maia C, Botelho M (2012) Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res 349:447–458
pubmed: 22592624 doi: 10.1007/s00441-012-1424-6
Maral T, Borman H, Arslan H, Demirhan B, Akinbingol G, Haberal M (1999) Effectiveness of human amnion preserved long-term in glycerol as a temporary biological dressing. Burns 25:625–635
pubmed: 10563689 doi: 10.1016/S0305-4179(99)00072-8
Martins V et al (2016) Suppression of TGFβ and angiogenesis by type VII collagen in cutaneous SCC. JNCI 108:djv293
pubmed: 26476432 doi: 10.1093/jnci/djv293
Maymó JL et al (2018) Proliferation and survival of human amniotic epithelial cells during their hepatic differentiation. PLoS ONE 13:e0191489
pubmed: 29346426 pmcid: 5773201 doi: 10.1371/journal.pone.0191489
McQuilling JP, Vines JB, Mowry KC (2017) In vitro assessment of a novel, hypothermically stored amniotic membrane for use in a chronic wound environment. Int Wound J 14:993–1005
pubmed: 28370981 pmcid: 7949938 doi: 10.1111/iwj.12748
Mehta M, Waner M, Fay A (2009) Amniotic membrane grafting in the management of conjunctival vascular malformations. Ophthalmic Plast Reconstr Surg 25:371–375
pubmed: 19966650 doi: 10.1097/IOP.0b013e3181b2f796
Mejía LF, Acosta C, Santamaría JP (2000) Use of nonpreserved human amniotic membrane for the reconstruction of the ocular surface. Cornea 19:288–291
pubmed: 10832685 doi: 10.1097/00003226-200005000-00006
Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl K-P (2011) Amniotic membrane transplantation in the human eye. Dtsch Arztebl Int 108:243
pubmed: 21547164 pmcid: 3087122
Miki T (2011) Amnion-derived stem cells: in quest of clinical applications. Stem Cell Res Ther 2:1–11
doi: 10.1186/scrt66
Miki T, Wong W, Zhou E, Gonzalez A, Garcia I, Grubbs BH (2016) Biological impact of xeno-free chemically defined cryopreservation medium on amniotic epithelial cells. Stem Cell Res Ther 7:1
doi: 10.1186/s13287-015-0258-z
Miljudin E, Zolotaryov A, Volova L, Ahmerova U (2004) Silica gel dissication of amniotic membrane with related epithelium cells for ocular surface reconstruction. Cell Tissue Bank 5:271–274
pubmed: 15591831 doi: 10.1007/s10561-004-1444-x
Mishra KP (2004) Cell membrane oxidative damage induced by gamma-radiation and apoptotic sensitivity. J Environ Pathol Toxicol Oncol 23:6
doi: 10.1615/JEnvPathToxOncol.v23.i1.60
Modaresifar K, Azizian S, Zolghadr M, Moravvej H, Ahmadiani A, Niknejad H (2017) The effect of cryopreservation on anti-cancer activity of human amniotic membrane. Cryobiol 74:61–67
doi: 10.1016/j.cryobiol.2016.12.001
Nakamura T et al (2004) Sterilized, freeze-dried amniotic membrane: a useful substrate for ocular surface reconstruction. Investig Ophthalmol vis Sci 45:93–99
doi: 10.1167/iovs.03-0752
Nakamura T et al (2006) Novel clinical application of sterilized, freeze-dried amniotic membrane to treat patients with pterygium. Acta Ophthalmol Scand 84:401–405
pubmed: 16704707 doi: 10.1111/j.1600-0420.2006.00667.x
Nakamura T et al (2008) The use of trehalose-treated freeze-dried amniotic membrane for ocular surface reconstruction. Biomaterials 29:3729–3737
pubmed: 18547637 doi: 10.1016/j.biomaterials.2008.05.023
Nejad AR, Hamidieh AA, Amirkhani MA, Sisakht MM (2021) Update review on five top clinical applications of human amniotic membrane in regenerative medicine. Placenta 103:104–119
pubmed: 33120046 doi: 10.1016/j.placenta.2020.10.026
Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cells Mater 15:88–99
doi: 10.22203/eCM.v015a07
Niknejad H, Deihim T, Solati-Hashjin M, Peirovi H (2011) The effects of preservation procedures on amniotic membrane’s ability to serve as a substrate for cultivation of endothelial cells. Cryobiology 63:145–151
pubmed: 21884690 doi: 10.1016/j.cryobiol.2011.08.003
Niknejad H, Paeini-Vayghan G, Tehrani F, Khayat-Khoei M, Peirovi H (2013a) Side dependent effects of the human amnion on angiogenesis. Placenta 34:340–345
pubmed: 23465536 doi: 10.1016/j.placenta.2013.02.001
Niknejad H, Yazdanpanah G, Mirmasoumi M, Abolghasemi H, Peirovi H, Ahmadiani A (2013b) Inhibition of HSP90 could be possible mechanism for anti-cancer property of amniotic membrane. Med Hypotheses 81:862–865
pubmed: 24054818 doi: 10.1016/j.mehy.2013.08.018
Okabe M et al (2014) Hyperdry human amniotic membrane is useful material for tissue engineering: physical, morphological properties, and safety as the new biological material. J Biomed Mater Res A 102:862–870
pubmed: 23589398 doi: 10.1002/jbm.a.34753
Oudart J-B et al (2017) Type XIX collagen: a new partner in the interactions between tumor cells and their microenvironment. Matrix Biol 57:169–177
pubmed: 27491275 doi: 10.1016/j.matbio.2016.07.010
Paolin A et al (2016) Cytokine expression and ultrastructural alterations in fresh-frozen, freeze-dried and γ-irradiated human amniotic membranes. Cell Tissue Bank 17:1–8
doi: 10.1007/s10561-016-9553-x
Parolini O et al (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived. Stem Cells 26(2):300–311
pubmed: 17975221 doi: 10.1634/stemcells.2007-0594
Pena JDO et al (2007) Ultrastructural and growth factor analysis of amniotic membrane preserved by different methods for ocular surger. Arq Bras Oftalmol 70:756–762
doi: 10.1590/S0004-27492007000500006
Qureshi IZ, Fareeha A, Khan WA (2010) Technique for processing and preservation of human amniotic membrane for ocular surface reconstruction. World Acad Sci Eng Technol 69:763–766
Rama P, Giannini R, Bruni A, Gatto C, Tiso R, Ponzin D (2001) Further evaluation of amniotic membrane banking for transplantation in ocular surface diseases. Cell Tissue Bank 2:155–163
pubmed: 15256913 doi: 10.1023/A:1020158206073
Rayate M, Gavhane N, Bhattacharya N, Burd A (2016) Efficacy of freshly collected amniotic membrane local application in wound management. IJIR 2(7):1562–1569
Riau AK, Beuerman RW, Lim LS, Mehta JS (2010) Preservation, sterilization and de-epithelialization of human amniotic membrane for use in ocular surface reconstruction. Biomaterials 31:216–225
pubmed: 19781769 doi: 10.1016/j.biomaterials.2009.09.034
Riboh JC, Saltzman BM, Yanke AB, Cole BJ (2016) Human amniotic membrane-derived products in sports medicine: basic science, early results, and potential clinical applications. Am J Sports Med 44:2425–2434
pubmed: 26585668 doi: 10.1177/0363546515612750
Ricci E et al (2013) Anti-fibrotic effects of fresh and cryopreserved human amniotic membrane in a rat liver fibrosis model. Cell Tissue Bank 14:475–488
pubmed: 22926336 doi: 10.1007/s10561-012-9337-x
Rodríguez-Ares MT et al (2009) Effects of lyophilization on human amniotic membrane. Acta Ophthalmol 87:396–403
pubmed: 18937812 doi: 10.1111/j.1755-3768.2008.01261.x
Roy A, Mantay M, Brannan C, Griffiths S (2022) Placental tissues as biomaterials in regenerative medicine. BioMed Res Int. https://doi.org/10.1155/2022/6751456
doi: 10.1155/2022/6751456 pubmed: 36398069 pmcid: 9666015
Russo A, Bonci P, Bonci P (2012) The effects of different preservation processes on the total protein and growth factor content in a new biological product developed from human amniotic membrane. Cell Tissue Bank 13:353–361
pubmed: 21681392 doi: 10.1007/s10561-011-9261-5
Schulze U, Hampel U, Sel S, Goecke TW, Thäle V, Garreis F, Paulsen F (2012) Fresh and cryopreserved amniotic membrane secrete the trefoil factor family peptide 3 that is well known to promote wound healing. Histochem Cell Biol 138:243–250
pubmed: 22476621 doi: 10.1007/s00418-012-0943-2
Sekar S, Sasirekha K, Krishnakumar S, Sastry T (2013) A novel cross-linked human amniotic membrane for corneal implantations. Proc Inst Mech Eng Part H J Eng Med 227:221–228
doi: 10.1177/0954411912472423
Seo JH, Kim YH, Kim JS (2008) Properties of the amniotic membrane may be applicable in cancer therapy. Med Hypotheses 70:812–814
pubmed: 17904762 doi: 10.1016/j.mehy.2007.08.008
Shi Q, Xie Y, Wang Y, Li S (2017) Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-anlaysis. Sci Rep 7:8538
pubmed: 28819292 pmcid: 5561141 doi: 10.1038/s41598-017-09005-7
Si J-W, Wang X-D, Shen SG (2015) Perinatal stem cells: a promising cell resource for tissue engineering of craniofacial bone. World J Stem Cells 7:149
pubmed: 25621114 pmcid: 4300925 doi: 10.4252/wjsc.v7.i1.149
Silini AR, Magatti M, Cargnoni A, Parolini O (2017) Is immune modulation the mechanism underlying the beneficial effects of amniotic cells and their derivatives in regenerative medicine? Cell Transplant 26:531–539
pubmed: 27938500 pmcid: 5661217 doi: 10.3727/096368916X693699
Singh R, Chacharkar M (2011) Dried gamma-irradiated amniotic membrane as dressing in burn wound care. J Tissue Viability 20:49–54
pubmed: 20619656 doi: 10.1016/j.jtv.2010.06.001
Singh R, Gupta P, Kumar P, Kumar A, Chacharkar M (2003) Properties of air dried radiation processed amniotic membranes under different storage conditions. Cell Tissue Bank 4:95–100
pubmed: 15256845 doi: 10.1023/B:CATB.0000007030.72031.12
Spoerl E, Wollensak G, Reber F, Pillunat L (2004) Cross-linking of human amniotic membrane by glutaraldehyde. Ophthalmic Res 36:71–77
pubmed: 15017101 doi: 10.1159/000076884
Strom SC, Gramignoli R (2016) Human amnion epithelial cells expressing HLA-G as novel cell-based treatment for liver disease. Hum Immunol 77:734–739
pubmed: 27476049 doi: 10.1016/j.humimm.2016.07.002
Taravella MJ, Chang CD (2001) 2-Octyl cyanoacrylate medical adhesive in treatment of a corneal perforation. Cornea 20:220–221
pubmed: 11248835 doi: 10.1097/00003226-200103000-00024
Thomasen H, Pauklin M, Steuhl K-P, Meller D (2009) Comparison of cryopreserved and air-dried human amniotic membrane for ophthalmologic applications. Graefes Arch Clin Exp Ophthalmol 247:1691–1700
pubmed: 19693529 doi: 10.1007/s00417-009-1162-y
Thomasen H et al (2011) The effect of long-term storage on the biological and histological properties of cryopreserved amniotic membrane. Curr Eye Res 36:247–255
pubmed: 21275517 doi: 10.3109/02713683.2010.542267
Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105:215–228
pubmed: 17986813 doi: 10.1254/jphs.CR0070034
Tomita T (2012) New dried human amniotic membrane is useful as a substitute for dural repair after skull base surgery. J Neurol Surg B Skull Base 73:302–307
pubmed: 24083120 pmcid: 3578633 doi: 10.1055/s-0032-1321506
Tseng SC, Prabhasawat P, Lee S-H (1997) Amniotic membrane transplantation for conjunctival surface reconstruction. Am J Ophthalmol 124:765–774
pubmed: 9402822 doi: 10.1016/S0002-9394(14)71693-9
Tsuno H et al (2014) Intraoral application of hyperdry amniotic membrane to surgically exposed bone surface. Oral Surg Oral Med Oral Pathol Oral Radiol 117:e83–e87
pubmed: 22981093 doi: 10.1016/j.oooo.2012.05.014
Valentin J (2004) Low-dose extrapolation of radiation-related cancer risk. Ann ICRP 35:1–140
Wassmer C-H, Berishvili E (2020) Immunomodulatory properties of amniotic membrane derivatives and their potential in regenerative medicine. Curr Diabetes Rep 20:1–10
doi: 10.1007/s11892-020-01316-w
Wolbank S et al (2009) Impact of human amniotic membrane preparation on release of angiogenic factors. J Tissue Eng Regen Med 3:651–654
pubmed: 19701933 doi: 10.1002/term.207
Yang P et al (2018) Biological characterization of human amniotic epithelial cells in a serum-free system and their safety evaluation. Acta Pharmacol Sin 39(8):1305–1316
pubmed: 29565036 pmcid: 6289351 doi: 10.1038/aps.2018.22
Yatim RM, Kannan TP, Ab Hamid SS, Shamsudin SH (2013) Effects of different processing methods of human amniotic membrane on the quality of extracted RNA. Arch Orofac Sci 8:47–53
Zare-Bidaki M, Sadrinia S, Erfani S, Afkar E, Ghanbarzade N (2017) Antimicrobial properties of amniotic and chorionic membranes: a comparative study of two human fetal sacs. J Reprod Infertil 18:218
pubmed: 28868246 pmcid: 5565909
Zhou W et al (2013) Characterization of neural cell differentiation potential of human amnion derived epithelia cells and mesenchymal stem cells. Cytotherapy 15:S33
doi: 10.1016/j.jcyt.2013.01.126
Zidan SM et al (2015) Maximizing the safety of glycerol preserved human amniotic membrane as a biological dressing. Burns 41:1498–1503
pubmed: 26188890 doi: 10.1016/j.burns.2015.03.009

Auteurs

Ameneh Jafari (A)

Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Yousef Mirzaei (Y)

Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq.

Ali Hussein Mer (AH)

Department of Nusring, Mergasour Technical Institute, Erbil Polytechnic University, Erbil, Iraq.

Mostafa Rezaei-Tavirani (M)

Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. tavirany@yahoo.com.

Zahra Jafari (Z)

9th Dey Manzariye Hospital, Isfahan University of Medical Sciences, Isfahan, Iran.

Hassan Niknejad (H)

Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Classifications MeSH