Multi-omics data integration reveals the complexity and diversity of host factors associated with influenza virus infection.


Journal

PeerJ
ISSN: 2167-8359
Titre abrégé: PeerJ
Pays: United States
ID NLM: 101603425

Informations de publication

Date de publication:
2023
Historique:
received: 15 06 2023
accepted: 06 09 2023
medline: 23 10 2023
pubmed: 16 10 2023
entrez: 16 10 2023
Statut: epublish

Résumé

Influenza viruses pose a significant and ongoing threat to human health. Many host factors have been identified to be associated with influenza virus infection. However, there is currently a lack of an integrated resource for these host factors. This study integrated human genes and proteins associated with influenza virus infections for 14 subtypes of influenza A viruses, as well as influenza B and C viruses, and built a database named H2Flu to store and organize these genes or proteins. The database includes 28,639 differentially expressed genes (DEGs), 1,850 differentially expressed proteins, and 442 proteins with differential posttranslational modifications after influenza virus infection, as well as 3,040 human proteins that interact with influenza virus proteins and 57 human susceptibility genes. Further analysis showed that the dynamic response of human cells to virus infection, cell type and strain specificity contribute significantly to the diversity of DEGs. Additionally, large heterogeneity was also observed in protein-protein interactions between humans and different types or subtypes of influenza viruses. Overall, the study deepens our understanding of the diversity and complexity of interactions between influenza viruses and humans, and provides a valuable resource for further studies on such interactions.

Identifiants

pubmed: 37842064
doi: 10.7717/peerj.16194
pii: 16194
pmc: PMC10569165
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

e16194

Informations de copyright

©2023 Zhu et al.

Déclaration de conflit d'intérêts

The authors declare there are no competing interests.

Références

Semin Respir Crit Care Med. 2016 Aug;37(4):487-500
pubmed: 27486731
Acta Virol. 2006;50(3):151-62
pubmed: 17131933
Vet Microbiol. 2022 Apr;267:109390
pubmed: 35290928
Trends Genet. 2012 May;28(5):233-43
pubmed: 22445588
Nature. 1977 Dec 8;270(5637):524-6
pubmed: 593371
J Proteomics. 2016 Mar 16;136:48-54
pubmed: 26828018
J Virol. 2018 Oct 12;92(21):
pubmed: 30111569
BMC Bioinformatics. 2021 Jan 7;22(1):18
pubmed: 33413085
Genome Med. 2014 Nov 29;6(11):115
pubmed: 25593595
J Infect Dis. 2015 Oct 15;212(8):1214-21
pubmed: 25904605
Nucleic Acids Res. 2017 Jan 4;45(D1):D466-D474
pubmed: 27679478
Eur J Clin Microbiol Infect Dis. 2020 Jul;39(7):1201-1208
pubmed: 32056049
Brief Bioinform. 2021 Mar 22;22(2):832-844
pubmed: 33515030
Int J Mol Sci. 2020 Dec 30;22(1):
pubmed: 33396899
Sci Total Environ. 2022 Apr 20;818:151724
pubmed: 34800462
Comput Struct Biotechnol J. 2022 Mar 07;20:1244-1253
pubmed: 35356543
Nat Rev Genet. 2019 Aug;20(8):467-484
pubmed: 31068683
Nucleic Acids Res. 2015 Jan;43(Database issue):D588-92
pubmed: 25217587
J Med Virol. 2021 Aug;93(8):4638-4646
pubmed: 33792930
Innovation (Camb). 2021 Jul 01;2(3):100141
pubmed: 34557778
PLoS Pathog. 2013;9(7):e1003440
pubmed: 23853584
Mol Cell Proteomics. 2023 Jun;22(6):100561
pubmed: 37119971
Cell Host Microbe. 2010 Jun 25;7(6):427-39
pubmed: 20542247
Viruses. 2021 Dec 29;14(1):
pubmed: 35062254
Nucleic Acids Res. 2014 Jan;42(Database issue):D358-63
pubmed: 24234451
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D535-9
pubmed: 16381927
Annu Rev Genet. 2002;36:305-32
pubmed: 12429695
Viruses. 2018 Sep 23;10(10):
pubmed: 30249048
Nucleic Acids Res. 2015 Jan;43(Database issue):D583-7
pubmed: 25392406
Nat Rev Dis Primers. 2018 Jun 28;4(1):3
pubmed: 29955068
Nucleic Acids Res. 2022 Jan 7;50(D1):D817-D827
pubmed: 34718748
Virol J. 2019 Jun 26;16(1):85
pubmed: 31242907
Adv Exp Med Biol. 2012;726:201-21
pubmed: 22297515
Science. 2021 Aug 20;373(6557):918-922
pubmed: 34413236
Vaccines (Basel). 2022 Mar 03;10(3):
pubmed: 35335027
Cold Spring Harb Perspect Med. 2020 Dec 1;10(12):
pubmed: 31871241
Arch Virol. 2022 Jan;167(1):141-152
pubmed: 34786609
Curr Opin Virol. 2022 Apr;53:101198
pubmed: 35030353
Trends Microbiol. 2011 Oct;19(10):501-8
pubmed: 21855347
Mol Cell Proteomics. 2016 Oct;15(10):3203-3219
pubmed: 27486199
Nucleic Acids Res. 2009 Jan;37(Database issue):D669-73
pubmed: 18974184
Cells. 2021 Jul 08;10(7):
pubmed: 34359892

Auteurs

Zhaozhong Zhu (Z)

College of Biology, Hunan University, Changsha, China.
School of Public Health, University of South China, Hengyang, China.

Ruina You (R)

College of Biology, Hunan University, Changsha, China.

Huiru Li (H)

College of Biology, Hunan University, Changsha, China.

Shuidong Feng (S)

School of Public Health, University of South China, Hengyang, China.

Huan Ma (H)

College of Biology, Hunan University, Changsha, China.

Chaohao Tuo (C)

College of Biology, Hunan University, Changsha, China.

Xiangxian Meng (X)

College of Biology, Hunan University, Changsha, China.

Song Feng (S)

Xiangya Hospital, Central South University, Changsha, China.

Yousong Peng (Y)

College of Biology, Hunan University, Changsha, China.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH