Chromosomal inversion polymorphisms are widespread across the species ranges of rough periwinkles (Littorina saxatilis and L. arcana).
ecological genetics
inversion
molecular evolution
molluscs
speciation
Journal
Molecular ecology
ISSN: 1365-294X
Titre abrégé: Mol Ecol
Pays: England
ID NLM: 9214478
Informations de publication
Date de publication:
16 Oct 2023
16 Oct 2023
Historique:
revised:
13
09
2023
received:
01
06
2023
accepted:
20
09
2023
medline:
16
10
2023
pubmed:
16
10
2023
entrez:
16
10
2023
Statut:
aheadofprint
Résumé
Inversions are thought to play a key role in adaptation and speciation, suppressing recombination between diverging populations. Genes influencing adaptive traits cluster in inversions, and changes in inversion frequencies are associated with environmental differences. However, in many organisms, it is unclear if inversions are geographically and taxonomically widespread. The intertidal snail, Littorina saxatilis, is one such example. Strong associations between putative polymorphic inversions and phenotypic differences have been demonstrated between two ecotypes of L. saxatilis in Sweden and inferred elsewhere, but no direct evidence for inversion polymorphism currently exists across the species range. Using whole genome data from 107 snails, most inversion polymorphisms were found to be widespread across the species range. The frequencies of some inversion arrangements were significantly different among ecotypes, suggesting a parallel adaptive role. Many inversions were also polymorphic in the sister species, L. arcana, hinting at an ancient origin.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : European Research Council
ID : ERC-2015-AdG-693030- BARRIERS
Pays : International
Informations de copyright
© 2023 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
Références
Ayala, D., Acevedo, P., Pombi, M., Dia, I., Boccolini, D., Costantini, C., Simard, F., & Fontenille, D. (2017). Chromosome inversions and ecological plasticity in the main African malaria mosquitoes. Evolution, 71(3), 686-701. https://doi.org/10.1111/evo.13176
Ayala, D., Ullastres, A., & González, J. (2014). Adaptation through chromosomal inversions in anopheles. Frontiers in Genetics, 5(May), 1-10. https://doi.org/10.3389/fgene.2014.00129
Barrón, M. G., Paupy, C., Rahola, N., Akone-ella, O., Ngangue, M. F., Wilson-bahun, T. A., Pombi, M., Kengne, P., Costantini, C., Simard, F., González, J., & Ayala, D. (2019). A new species in the major malaria vector complex sheds light on reticulated species evolution. Scientific Reports, 9, 14753. https://doi.org/10.1038/s41598-019-49065-5
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B: Methodological, 57(1), 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Bolnick, D. I., Barrett, R. D. H., Oke, K. B., Rennison, D. J., & Stuart, Y. E. (2018). (Non)parallel evolution. Annual Review of Ecology, Evolution, and Systematics, 49, 303-330. https://doi.org/10.1146/annurev-ecolsys-110617-062240
Boulding, E. G., Rivas, M. J., González-Lavín, N., Rolán-Alvarez, E., & Galindo, J. (2017). Size selection by a gape-limited predator of a marine snail: Insights into magic traits for speciation. Ecology and Evolution, 7(2), 674-688. https://doi.org/10.1002/ece3.2659
Butlin, R. K. (2005). Recombination and speciation. Molecular Ecology, 14, 2621-2635. https://doi.org/10.1111/j.1365-294X.2005.02617.x
Butlin, R. K., Galindo, J., & Grahame, J. W. (2008). Sympatric, parapatric or allopatric: The most important way to classify speciation? Philosophical Transactions of the Royal Society, B: Biological Sciences, 363, 2997-3007. https://doi.org/10.1098/rstb.2008.0076
Carvalho, C. M. B., & Lupski, J. R. (2016). Mechanisms underlying structural variant formation in genomic disorders. Nature Reviews Genetics, 17(4), 224-238. https://doi.org/10.1038/nrg.2015.25
Coughlan, J. M., & Willis, J. H. (2019). Dissecting the role of a large chromosomal inversion in life history divergence throughout the Mimulus guttatus species complex. Molecular Ecology, 28, 1343-1357. https://doi.org/10.1111/mec.14804
Doellman, M. M., Trussell, G. C., Grahame, J. W., & Vollmer, S. V. (2011). Phylogeographic analysis reveals a deep lineage split within North Atlantic Littorina saxatilis. Proceedings of the Royal Society B: Biological Sciences, 278(1722), 3175-3183. https://doi.org/10.1098/rspb.2011.0346
Durmaz, E., Kerdaffrec, E., Katsianis, G., Kapun, M., & Flatt, T. (2020). How selection acts on chromosomal inversions. eLS, 1, 307-315. https://doi.org/10.1002/9780470015902.a0028745
Faria, R., Chaube, P., Morales, H. E., Larsson, T., Lemmon, A. R., Lemmon, E. M., Rafajlović, M., Panova, M., Ravinet, M., Johannesson, K., Westram, A. M., & Butlin, R. K. (2019). Multiple chromosomal rearrangements in a hybrid zone between Littorina saxatilis ecotypes. Molecular Ecology, 28(6), 1375-1393. https://doi.org/10.1111/mec.14972
Faria, R., Johannesson, K., Butlin, R. K., & Westram, A. M. (2019). Evolving inversions. Trends in Ecology & Evolution, 34(3), 239-248. https://doi.org/10.1016/j.tree.2018.12.005
Faria, R., & Navarro, A. (2010). Chromosomal speciation revisited: Rearranging theory with pieces of evidence. Trends in Ecology & Evolution, 25(11), 660-669. https://doi.org/10.1016/j.tree.2010.07.008
Flores, M., Morales, L., Gonzaga-Jauregui, C., Domínguez-Vidaña, R., Zepeda, C., Yañez, O., Gutiérrez, M., Lemus, T., Valle, D., Avila, M. C., Blanco, D., Medina-Ruiz, S., Meza, K., Ayala, E., García, D., Bustos, P., González, V., Girard, L., Tusie-Luna, T., … Palacios, R. (2007). Recurrent DNA inversion rearrangements in the human genome. Proceedings of the National Academy of Sciences of the United States of America, 104(15), 6099-6106. https://doi.org/10.1073/pnas.0701631104
Fuller, Z. L., Leonard, C. J., Young, R. E., Schaeffer, S. W., & Phadnis, N. (2018). Ancestral polymorphisms explain the role of chromosomal inversions in speciation. PLoS Genetics, 14(7), e1007526. https://doi.org/10.1371/journal.pgen.1007526
Hanlon, V. C. T., Lansdorp, P. M., & Guryev, V. (2022). A survey of current methods to detect and genotype inversions. Human Mutation, 43(11), 1576-1589. https://doi.org/10.1002/humu.24458
Harringmeyer, O. S., & Hoekstra, H. E. (2022). Chromosomal inversion polymorphisms shape the genomic landscape of deer mice. Nature Ecology & Evolution, 6, 1965-1979. https://doi.org/10.1038/s41559-022-01890-0
Hearn, K. E., Johannesson, K., Koch, E. L., Stankowski, S., Butlin, R. K., Faria, R., & Westram, A. M. (2022). Differing associations between sex determination and sex-linked inversions in two ecotypes of Littorina saxatilis. Evolution Letters, 6, 358-374. https://doi.org/10.1002/evl3.295
Hoffmann, A. A., & Rieseberg, L. H. (2008). Revisiting the impact of inversions in evolution: From population genetic markers to drivers of adaptive shifts and speciation? Annual Review of Ecology, Evolution, and Systematics, 39, 21-42.
Jackson, B. C. (2011). Recombination-suppression: How many mechanisms for chromosomal speciation? Genetica, 139(3), 393-402. https://doi.org/10.1007/s10709-011-9558-0
Janson, K. (1982). Phenotypic differentiation in Littorina saxatilis Olivi (Mollusca, Prosobranchia) in a small area on the Swedish west coast. Journal of Molluscan Studies, 48(2), 167-173. https://doi.org/10.1093/oxfordjournals.mollus.a065633
Jay, P., Whibley, A., Frézal, L., Rodríguez de Cara, M. Á., Nowell, R. W., Mallet, J., Dasmahapatra, K. K., & Joron, M. (2018). Supergene evolution triggered by the introgression of a chromosomal inversion. Current Biology, 28, 1839-1845. https://doi.org/10.1016/j.cub.2018.04.072
Johannesson, B. (1986). Shell morphology of Littorina saxatilis Olivi: The relative importance of physical factors and predation. Journal of Experimental Marine Biology and Ecology, 102(2-3), 183-195. https://doi.org/10.1016/0022-0981(86)90175-9
Jombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403-1405. https://doi.org/10.1093/bioinformatics/btn129
Jombart, T., & Ahmed, I. (2011). Adegenet 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070-3071. https://doi.org/10.1093/bioinformatics/btr521
Jones, F. C., Grabherr, M. G., Chan, Y. F., Russell, P., Mauceli, E., Johnson, J., Swofford, R., Pirun, M., Zody, M. C., White, S., Birney, E., Searle, S., Schmutz, J., Grimwood, J., Dickson, M. C., Myers, R. M., Miller, C. T., Summers, B. R., Knecht, A. K., … Kingsley, D. M. (2012). The genomic basis of adaptive evolution in threespine sticklebacks. Nature, 484(7392), 55-61. https://doi.org/10.1038/nature10944
Kapun, M., & Flatt, T. (2019). The adaptive significance of chromosomal inversion polymorphisms in Drosophila melanogaster. Molecular Ecology, 28(6), 1263-1282. https://doi.org/10.1111/mec.14871
Kemppainen, P., Knight, C. G., Sarma, D. K., Hlaing, T., Prakash, A., Maung Maung, Y. N., Somboon, P., Mahanta, J., & Walton, C. (2015). Linkage disequilibrium network analysis (LDna) gives a global view of chromosomal inversions, local adaptation and geographic structure. Molecular Ecology Resources, 15(5), 1031-1045. https://doi.org/10.1111/1755-0998.12369
Kess, T., & Boulding, E. G. (2019). Genome-wide association analyses reveal polygenic genomic architecture underlying divergent shell morphology in Spanish Littorina saxatilis ecotypes. Ecology and Evolution, 9(17), 9427-9441. https://doi.org/10.1002/ece3.5378
Kirkpatrick, M., & Barton, N. (2006). Chromosome inversions, local adaptation and speciation. Genetics, 173(1), 419-434. https://doi.org/10.1534/genetics.105.047985
Koch, E. L., Morales, H. E., Larsson, J., Westram, A. M., Faria, R., Lemmon, A. R., Lemmon, E. M., Johannesson, K., & Butlin, R. K. (2021). Genetic variation for adaptive traits is associated with polymorphic inversions in Littorina saxatilis. Evolution Letters, 5(3), 196-213. https://doi.org/10.1002/evl3.227
Koch, E. L., Ravinet, M., Westram, A. M., Johannesson, K., & Butlin, R. K. (2022). Genetic architecture of repeated phenotypic divergence in Littorina saxatilis ecotype evolution. Evolution, 76, 2332-2346. https://doi.org/10.1111/evo.14602
Larsson, J. (2021). Understanding the evolution of shell shape in snails. University of Sheffield.
Le Pennec, G., Butlin, R. K., Jonsson, P. R., Larsson, A. I., Lindborg, J., Bergström, E., Westram, A. M., & Johannesson, K. (2017). Adaptation to dislodgement risk on wave- swept rocky shores in the snail Littorina saxatilis. PLoS One, 12(10), e0186901. https://doi.org/10.1371/journal.pone.0186901
Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics, 25(14), 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
Li, H., & Ralph, P. (2019). Local PCA shows how the effect of population structure differs along the genome. Genetics, 211(January), 289-304.
MacGuigan, D. J., Krabbenhoft, T. J., Harrington, R. C., Wainwright, D. K., Backenstose, N. J. C., & Near, T. J. (2022). Lacustrine speciation associated with chromosomal inversion in a lineage of riverine fishes. BioRxiv. https://doi.org/10.1101/2022.12.12.519811
Matschiner, M., Barth, J. M. I., Tørresen, O. K., Star, B., Baalsrud, H. T., Brieuc, M. S. O., Pampoulie, C., Bradbury, I., Jakobsen, K. S., & Jentoft, S. (2022). Supergene origin and maintenance in Atlantic cod. Nature Ecology & Evolution, 6(4), 469-481. https://doi.org/10.1038/s41559-022-01661-x
McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20, 1297-1303. https://doi.org/10.1101/gr.107524.110.20
Mérot, C., Oomen, R. A., Tigano, A., & Wellenreuther, M. (2020). A roadmap for understanding the evolutionary significance of structural genomic variation. Trends in Ecology & Evolution, 35(7), 561-572. https://doi.org/10.1016/j.tree.2020.03.002
Morales, H. E., Faria, R., Johannesson, K., Larsson, T., Panova, M., Westram, A. M., & Butlin, R. K. (2019). Genomic architecture of parallel ecological divergence: Beyond a single environmental contrast. Science Advances, 5, eaav9963. https://doi.org/10.1126/sciadv.aav9963
Nowling, R. J., Manked, K. R., & Emrich, S. J. (2020). Detecting inversions with PCA in the presence of population structure. PLoS One, 15(10), e0240429. https://doi.org/10.1371/journal.pone.0240429
Panova, M., Aronsson, H., Cameron, R. A., Dahl, P., Godhe, A., Lind, U., Ortega-Martinez, O., Pereyra, R., Tesson, S. V. M., Wrange, A. L., Blomberg, A., & Johannesson, K. (2016). DNA extraction protocols for whole-genome sequencing in marine organisms. Methods in Molecular Biology, 1452, 13-44. https://doi.org/10.1007/978-1-4939-3774-5_2
Panova, M., Blakeslee, A. M. H., Miller, A. W., Mäkinen, T., Ruiz, G. M., Johannesson, K., & André, C. (2011). Glacial history of the North Atlantic marine snail, Littorina saxatilis, inferred from distribution of mitochondrial DNA lineages. PLoS ONE, 6(3), e17511. https://doi.org/10.1371/journal.pone.0017511
Panova, M., Johansson, T., Canbäck, B., Bentzer, J., Rosenblad, M. A., Johannesson, K., Tunlid, A., & André, C. (2014). Species and gene divergence in Littorina snails detected by array comparative genomic hybridization. BMC Genomics, 15, 687.
Ranz, J. M., Maurin, D., Chan, Y. S., von Grotthuss, M., Hillier, L. D. W., Roote, J., Ashburner, M., & Bergman, C. M. (2007). Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biology, 5(6), 1366-1381. https://doi.org/10.1371/journal.pbio.0050152
Reid, D. G. (1996). Systematics and evolution of Littorina. The Ray Society.
Reid, D. G., Dyal, P., & Williams, S. T. (2012). A global molecular phylogeny of 147 periwinkle species (Gastropoda, Littorininae). Zoologica Scripta, 41(2), 125-136. https://doi.org/10.1111/j.1463-6409.2011.00505.x
Stankowski, S., Westram, A. M., Zagrodzka, Z. B., Eyres, I., Broquet, T., Johannesson, K., & Butlin, R. K. (2020). The evolution of strong reproductive isolation between sympatric intertidal snails: Strong RI in Littorinids. Philosophical Transactions of the Royal Society, B: Biological Sciences, 375(1806), 20190545. https://doi.org/10.1098/rstb.2019.0545
Stankowski, S., Zagrodzka, Z. B., Galindo, J., Montano-Rendón, M., Faria, R., Mikhailova, N., Blakeslee, A. M. H., Arnason, E., Broquet, T., Morales, H. E., Grahame, J. W., Westram, A. M., Johannesson, K., & Butlin, R. K. (2023). Whole-genome phylogeography of the intertidal snail Littorina saxatilis. Evolutionary Journal of the Linnean Society, 2, kzad002. https://doi.org/10.1093/evolinnean/kzad002
Stankowski, S., Zagrodzka, Z. B., Garlovsky, M. D., Pal, A., Castillo, D. G., Le Moan, A., Leder, E., Reeve, J., Westram, A. M., Butlin, R. K., Biology, E., & De Roscoff, S. B. (2023). Selection on many loci drove the origin and spread of a key innovation. BioRxiv, 1-12. https://doi.org/10.1101/2023.02.13.528213
Tirado, T., Saura, M., Rolán-Alvarez, E., & Quesada, H. (2016). Historical biogeography of the marine snail Littorina saxatilis inferred from haplotype and shell morphology evolution in NW Spain. PLoS One, 11(8), 1-13. https://doi.org/10.1371/journal.pone.0161287
Todesco, M., Owens, G. L., Bercovich, N., Légaré, J., Soudi, S., Burge, D. O., Huang, K., Ostevik, K. L., Drummond, E. B. M., Imerovski, I., Lande, K., Pascual-Robles, M. A., Nanavati, M., Jahani, M., Cheung, W., Staton, S. E., Muños, S., Nielsen, R., Donovan, L. A., … Rieseberg, L. H. (2020). Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature, 584, 602-607. https://doi.org/10.1038/s41586-020-2467-6
Wellenreuther, M., & Bernatchez, L. (2018). Eco-evolutionary genomics of chromosomal inversions. Trends in Ecology & Evolution, 33(6), 427-440. https://doi.org/10.1016/j.tree.2018.04.002
Westram, A. M., Faria, R., Johannesson, K., & Butlin, R. (2021). Using replicate hybrid zones to understand the genomic basis of adaptive divergence. Molecular Ecology, 30, 3797-3814. https://doi.org/10.1111/mec.15861
Westram, A. M., Faria, R., Johannesson, K., Butlin, R., & Barton, N. (2022). Inversions and parallel evolution. Philosophical Transactions of the Royal Society, B: Biological Sciences, 377(1856), 20210203. https://doi.org/10.1098/rstb.2021.0203
Westram, A. M., Rafajlović, M., Chaube, P., Faria, R., Larsson, T., Panova, M., Ravinet, M., Blomberg, A., Mehlig, B., Johannesson, K., & Butlin, R. (2018). Clines on the seashore: The genomic architecture underlying rapid divergence in the face of gene flow. Evolution Letters, 2(4), 297-309. https://doi.org/10.1002/evl3.74