Application of UHPLC-MS/MS method to monitor the occurrence of sulfonamides and their transformation products in soil in Silesia, Poland.
Environmental monitoring
LC-MS/MS-sulfonamides recovery from soil
Organic carbon
Soil pollution
Sulfonamides
Transformation products
Urban areas
Journal
Environmental science and pollution research international
ISSN: 1614-7499
Titre abrégé: Environ Sci Pollut Res Int
Pays: Germany
ID NLM: 9441769
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
04
05
2023
accepted:
25
09
2023
medline:
15
11
2023
pubmed:
16
10
2023
entrez:
16
10
2023
Statut:
ppublish
Résumé
Sulfonamides circulating in the environment lead to disturbances in food chains and local ecosystems, but most importantly contribute to development of resistance genes, which generate problems with multidrug-resistant bacterial infections treatment. In urban areas, sources of sulfonamide distribution in soils have received comparatively less attention in contrast to rural regions, where animal-derived manure, used as a natural fertilizer, is considered the main source. The aim of this study was to determine eight sulfonamides (sulfadiazine, sulfamerazine, sulfamethazine, sulfamethizole, sulfamethoxazole, sulfapyridine, sulfathiazole, and sulfisoxazole) in environmental soil samples collected from urbanized regions in Silesian Voivodeship with increased animal activity. These soils were grouped according to the organic carbon content. It was necessary to develop versatile and efficient extraction and determination method to analyze selected sulfonamides in various soil types. The developed LC-MS/MS method for sulfonamides analyzing was validated. The obtained recoveries exceeded 45% for soil with medium organic carbon content and 88% for sample with a very low organic carbon content (arenaceous quartz). The obtained results show the high impact of organic matter on analytes adsorption in soil, which influences recovery. All eight sulfa drugs were determined in environmental samples in the concentration range 1.5-10.5 ng g
Identifiants
pubmed: 37843710
doi: 10.1007/s11356-023-30146-y
pii: 10.1007/s11356-023-30146-y
pmc: PMC10643288
doi:
Substances chimiques
Sulfonamides
0
Soil
0
Sulfanilamide
21240MF57M
Carbon
7440-44-0
Anti-Bacterial Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
112922-112942Informations de copyright
© 2023. The Author(s).
Références
Albero B, Tadeo JL, Escario M et al (2018) Persistence and availability of veterinary antibiotics in soil and soil-manure systems. Sci Total Environ 643:1562–1570. https://doi.org/10.1016/j.scitotenv.2018.06.314
doi: 10.1016/j.scitotenv.2018.06.314
Al-Maqdi KA, Hisaindee S, Rauf MA, Ashraf SS (2018) Detoxification and degradation of sulfamethoxazole by soybean peroxidase and UV + H2O2 remediation approaches. Chem Eng J 352:450–458. https://doi.org/10.1016/j.cej.2018.07.036
doi: 10.1016/j.cej.2018.07.036
Ayukekbong JA, Ntemgwa M, Atabe AN (2017) The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob Resist Infect Control 6. https://doi.org/10.1186/s13756-017-0208-x
Babić S, Zrnčić M, Ljubas D et al (2015) Photolytic and thin TiO2 film assisted photocatalytic degradation of sulfamethazine in aqueous solution. Environ Sci Pollut Res 22:11372–11386. https://doi.org/10.1007/s11356-015-4338-5
doi: 10.1007/s11356-015-4338-5
Baran W, Adamek E, Ziemiańska J, Sobczak A (2011) Effects of the presence of sulfonamides in the environment and their influence on human health. J Hazard Mater 196:1–15. https://doi.org/10.1016/j.jhazmat.2011.08.082
doi: 10.1016/j.jhazmat.2011.08.082
Barbieri M, Carrera J, Ayora C et al (2012) Formation of diclofenac and sulfamethoxazole reversible transformation products in aquifer material under denitrifying conditions: Batch experiments. Sci Total Environ 426:256–263. https://doi.org/10.1016/j.scitotenv.2012.02.058
doi: 10.1016/j.scitotenv.2012.02.058
Białk-Bielińska A, Caban M, Pieczyńska A et al (2017) Mixture toxicity of six sulfonamides and their two transformation products to green algae Scenedesmus vacuolatus and duckweed Lemna minor. Chemosphere 173:542–550. https://doi.org/10.1016/j.chemosphere.2017.01.035
doi: 10.1016/j.chemosphere.2017.01.035
Bílková Z, Malá J, Hrich K (2019) Fate and behaviour of veterinary sulphonamides under denitrifying conditions. Sci Total Environ 695
Carmona E, Andreu V, Picó Y (2017) Multi-residue determination of 47 organic compounds in water, soil, sediment and fish—Turia River as case study. J Pharm Biomed Anal 146:117–125. https://doi.org/10.1016/j.jpba.2017.08.014
doi: 10.1016/j.jpba.2017.08.014
Chen Y, Yang Z, Liu Y, Liu Y (2020) Fenton-like degradation of sulfamerazine at nearly neutral pH using Fe-Cu-CNTs and Al0-CNTs for in-situ generation of H2O2/[rad]OH/O2[rad]−. Chem Eng J 396:. https://doi.org/10.1016/j.cej.2020.125329
Cioroiu BI, Lazar MI, Bello-López MA, Fernandez-Torres R (2013) Identification of the specified impurities of silver sulfadiazine using a screening of degradation products in different stress physico-chemical media. Talanta 116:653–662. https://doi.org/10.1016/j.talanta.2013.07.029
doi: 10.1016/j.talanta.2013.07.029
Cycoń M, Mrozik A, Piotrowska-Seget Z (2019) Antibiotics in the soil environment—degradation and their impact on microbial activity and diversity. Front Microbiol 10:338. https://doi.org/10.3389/fmicb.2019.00338
doi: 10.3389/fmicb.2019.00338
Deng F, Li S, Zhou M et al (2019) A biochar modified nickel-foam cathode with iron-foam catalyst in electro-Fenton for sulfamerazine degradation. Appl Catal B 256:. https://doi.org/10.1016/j.apcatb.2019.117796
Díaz-Cruz MS, López De Alda MJ, Barceló D (2003) Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC - Trends Anal Chem 22:340–351. https://doi.org/10.1016/S0165-9936(03)00603-4
doi: 10.1016/S0165-9936(03)00603-4
Dmitrienko SG, Kochuk EV, Apyari VV et al (2014) Recent advances in sample preparation techniques and methods of sulfonamides detection - A review. Anal Chim Acta 850:6–25. https://doi.org/10.1016/j.aca.2014.08.023
doi: 10.1016/j.aca.2014.08.023
García-Galán MJ, Díaz-Cruz S, Barceló D (2013) Multiresidue trace analysis of sulfonamide antibiotics and their metabolites in soils and sewage sludge by pressurized liquid extraction followed by liquid chromatography-electrospray-quadrupole linear ion trap mass spectrometry. J Chromatogr A 1275:32–40. https://doi.org/10.1016/j.chroma.2012.12.004
doi: 10.1016/j.chroma.2012.12.004
Gonet S (2007) Organic matter in the European Union thematic strategy on soil protection. Roczniki Gleboznawcze 58:15–26
Gu D, Feng Q, Guo C et al (2019) Occurrence and Risk Assessment of Antibiotics in Manure, Soil, Wastewater, Groundwater from Livestock and Poultry Farms in Xuzhou, China. Bull Environ Contam Toxicol 103:590–596. https://doi.org/10.1007/s00128-019-02692-0
doi: 10.1007/s00128-019-02692-0
Ho YB, Zakaria MP, Latif PA, Saari N (2012) Simultaneous determination of veterinary antibiotics and hormone in broiler manure, soil and manure compost by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1262:160–168. https://doi.org/10.1016/j.chroma.2012.09.024
doi: 10.1016/j.chroma.2012.09.024
Ho YB, Zakaria MP, Latif PA, Saari N (2014) Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia. Sci Total Environ 488–489:261–267. https://doi.org/10.1016/j.scitotenv.2014.04.109
doi: 10.1016/j.scitotenv.2014.04.109
Hoff R, Pizzolato TM, Diaz-Cruz MS (2016) Trends in sulfonamides and their by-products analysis in environmental samples using mass spectrometry techniques. Trends Environ Anal Chem 9:24–36. https://doi.org/10.1016/j.teac.2016.02.002
doi: 10.1016/j.teac.2016.02.002
Hou J, Wan W, Mao D et al (2015) Occurrence and distribution of sulfonamides, tetracyclines, quinolones, macrolides, and nitrofurans in livestock manure and amended soils of Northern China. Environ Sci Pollut Res 22:4545–4554. https://doi.org/10.1007/s11356-014-3632-y
doi: 10.1007/s11356-014-3632-y
Hsu WH (2008) Appendix II. Dosage Table. In: Handbook of Veterinary Pharmacology, 1st edn. Wiley-Blackwell, pp 489–536
Hu W, Ma L, Guo C et al (2012) Simultaneous extraction and determination of fluoroquinolones, tetracyclines and sulfonamides antibiotics in soils using optimised solid phase extraction chromatography-tandem mass spectrometry. Int J Environ Anal Chem 92:698–713. https://doi.org/10.1080/03067319.2010.520122
doi: 10.1080/03067319.2010.520122
Huynh K, Reinhold D (2019) Metabolism of Sulfamethoxazole by the Model Plant Arabidopsis thaliana. Environ Sci Technol 53:4901–4911. https://doi.org/10.1021/acs.est.8b06657
doi: 10.1021/acs.est.8b06657
Kapanadze K, Magalashvili A, Imnadze P (2019) Distribution of natural radionuclides in the soils and assessment of radiation hazards in the Khrami Late Variscan crystal massif (Georgia). Heliyon 5:1377. https://doi.org/10.1016/j.heliyon.2019
doi: 10.1016/j.heliyon.2019
Kim HY, Kim TH, Cha SM, Yu S (2017) Degradation of sulfamethoxazole by ionizing radiation: Identification and characterization of radiolytic products. Chem Eng J 313:556–566. https://doi.org/10.1016/j.cej.2016.12.080
doi: 10.1016/j.cej.2016.12.080
Koba O, Golovko O, Kodešová R et al (2017) Antibiotics degradation in soil: A case of clindamycin, trimethoprim, sulfamethoxazole and their transformation products. Environ Pollut 220:1251–1263. https://doi.org/10.1016/j.envpol.2016.11.007
doi: 10.1016/j.envpol.2016.11.007
Kodešová R, Grabic R, Kočárek M et al (2015) Pharmaceuticals’ sorptions relative to properties of thirteen different soils. Sci Total Environ 511:435–443. https://doi.org/10.1016/j.scitotenv.2014.12.088
doi: 10.1016/j.scitotenv.2014.12.088
Kokoszka K, Wilk J, Felis E, Bajkacz S (2021) Application of UHPLC-MS/MS method to study occurrence and fate of sulfonamide antibiotics and their transformation products in surface water in highly urbanized areas. Chemosphere 283:131189. https://doi.org/10.1016/j.chemosphere.2021.131189
doi: 10.1016/j.chemosphere.2021.131189
Lamshöft M, Sukul P, Zühlke S, Spiteller M (2007) Metabolism of 14C-labelled and non-labelled sulfadiazine after administration to pigs. Anal Bioanal Chem 388:1733–1745. https://doi.org/10.1007/s00216-007-1368-y
doi: 10.1007/s00216-007-1368-y
Leal RMP, Alleoni LRF, Tornisielo VL, Regitano JB (2013) Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils. Chemosphere 92:979–985. https://doi.org/10.1016/j.chemosphere.2013.03.018
doi: 10.1016/j.chemosphere.2013.03.018
Lertpaitoonpan W, Ong SK, Moorman TB (2009) Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere 76:558–564. https://doi.org/10.1016/j.chemosphere.2009.02.066
doi: 10.1016/j.chemosphere.2009.02.066
Li C, Chen J, Wang J et al (2015) Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing, China and an associated risk assessment. Sci Total Environ 521–522:101–107. https://doi.org/10.1016/j.scitotenv.2015.03.070
doi: 10.1016/j.scitotenv.2015.03.070
Li J, Zhao L, Feng M et al (2021) Abiotic transformation and ecotoxicity change of sulfonamide antibiotics in environmental and water treatment processes: A critical review. Water Res 202. https://doi.org/10.1016/j.watres.2021.117463
Li M, Wang C, Yau M et al (2017) Sulfamethazine degradation in water by the VUV/UV process: Kinetics, mechanism and antibacterial activity determination based on a mini-fluidic VUV/UV photoreaction system. Water Res 108:348–355. https://doi.org/10.1016/j.watres.2016.11.018
doi: 10.1016/j.watres.2016.11.018
Li YW, Wu XL, Mo CH et al (2011) Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the pearl river delta area, Southern China. J Agric Food Chem 59:7268–7276. https://doi.org/10.1021/jf1047578
doi: 10.1021/jf1047578
Liu Y, Tan N, Guo J, Wang J (2020) Catalytic activation of O2 by Al0-CNTs-Cu2O composite for Fenton-like degradation of sulfamerazine antibiotic at wide pH range. J Hazard Mater 396. https://doi.org/10.1016/j.jhazmat.2020.122751
Łukaszewicz P, Kumirska J, Białk-Bielińska A et al (2017) Assessment of soils contamination with veterinary antibiotic residues in Northern Poland using developed MAE-SPE-LC/MS/MS methods. Environ Sci Pollut Res 24:21233–21247. https://doi.org/10.1007/s11356-017-9757-z
doi: 10.1007/s11356-017-9757-z
Majewsky M, Glauner T, Horn H (2015) Systematic suspect screening and identification of sulfonamide antibiotic transformation products in the aquatic environment. Anal Bioanal Chem 407. https://doi.org/10.1007/s00216-015-8748-5
Martínez-Carballo E, González-Barreiro C, Scharf S, Gans O (2007) Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ Pollut 148:570–579. https://doi.org/10.1016/j.envpol.2006.11.035
doi: 10.1016/j.envpol.2006.11.035
Mocek A (2020) Gleboznawstwo, 1st edn. PWN, Warszawa
Moyo B, Tavengwa NT (2022) Critical review of solid phase extraction for multiresidue clean-up and pre-concentration of antibiotics from livestock and poultry manure. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 39:229–241
doi: 10.1080/19440049.2021.1989497
Osiński Z, Patyra E, Kwiatek K (2022) HPLC-FLD-Based Method for the Detection of Sulfonamides in Organic Fertilizers Collected from Poland. Molecules 27:. https://doi.org/10.3390/molecules27062031
Pan M, Chu LM (2017) Transfer of antibiotics from wastewater or animal manure to soil and edible crops. Environ Pollut 231:829–836. https://doi.org/10.1016/j.envpol.2017.08.051
doi: 10.1016/j.envpol.2017.08.051
Pan M, Wong CKC, Chu LM (2014) Distribution of antibiotics in wastewater-irrigated soils and their accumulation in vegetable crops in the Pearl River Delta, Southern China. J Agric Food Chem 62:11062–11069. https://doi.org/10.1021/jf503850v
doi: 10.1021/jf503850v
Rodríguez-Rodríguez CE, Jesús García-Galán M, Blánquez P et al (2012) Continuous degradation of a mixture of sulfonamides by Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole. J Hazard Mater 213–214:347–354. https://doi.org/10.1016/j.jhazmat.2012.02.008
doi: 10.1016/j.jhazmat.2012.02.008
Rossmann J, Gurke R, Renner LD et al (2015) Evaluation of the matrix effect of different sample matrices for 33 pharmaceuticals by post-column infusion. J Chromatogr B Anal Technol Biomed Life Sci 1000:84–94. https://doi.org/10.1016/j.jchromb.2015.06.019
doi: 10.1016/j.jchromb.2015.06.019
Sacher F, Lange FT, Brauch H-J, Blankenhorn I (2001) Pharmaceuticals in groundwaters Analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany. J Chromatogr A 938:199–210. https://doi.org/10.1016/S0021-9673(01)01266-3
doi: 10.1016/S0021-9673(01)01266-3
Shelver WL, Hakk H, Larsen GL et al (2010) Development of an ultra-high-pressure liquid chromatography-tandem mass spectrometry multi-residue sulfonamide method and its application to water, manure slurry, and soils from swine rearing facilities. J Chromatogr A 1217:1273–1282. https://doi.org/10.1016/j.chroma.2009.12.034
doi: 10.1016/j.chroma.2009.12.034
Shikuku VO, Zanella R, Kowenje CO et al (2018) Single and binary adsorption of sulfonamide antibiotics onto iron-modified clay: linear and nonlinear isotherms, kinetics, thermodynamics, and mechanistic studies. Appl Water Sci 8:. https://doi.org/10.1007/s13201-018-0825-4
Shuey CD (1990) Separation processes in biotechnology. Ion-exchange processes. Bioprocess Technol 9:263–286
Stando K, Korzeniewska E, Felis E et al (2022) Determination of antimicrobial agents and their transformation products in an agricultural water-soil system modified with manure. Sci Rep 12:17529. https://doi.org/10.1038/s41598-022-22440-5
doi: 10.1038/s41598-022-22440-5
Tao S, Chen H, Li N, et al (2022) The Spread of Antibiotic Resistance Genes In Vivo Model. Canadian Journal of Infectious Diseases and Medical Microbiology 2022:. https://doi.org/10.1155/2022/3348695
Taylor PJ (2005) Matrix effects: The Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem 38:328–334. https://doi.org/10.1016/j.clinbiochem.2004.11.007
doi: 10.1016/j.clinbiochem.2004.11.007
Thiele-Bruhn S, Seibicke T, Schulten H-R, Leinweber P (2004) Sorption of Sulfonamide Pharmaceutical Antibiotics on Whole Soils and Particle-Size Fractions. J Environ Qual 33:1331–1343
doi: 10.2134/jeq2004.1331
Tian R, Zhang R, Uddin M et al (2019) Uptake and metabolism of clarithromycin and sulfadiazine in lettuce. Environ Pollut 247:1134–1142. https://doi.org/10.1016/j.envpol.2019.02.009
doi: 10.1016/j.envpol.2019.02.009
Wang B, Fu T, An B, Liu Y (2020) UV light-assisted persulfate activation by Cu0-Cu2O for the degradation of sulfamerazine. Sep Purif Technol 251:. https://doi.org/10.1016/j.seppur.2020.117321
Wang J, Wang S (2018) Microbial degradation of sulfamethoxazole in the environment. Appl Microbiol Biotechnol 102:3573–3582. https://doi.org/10.1007/s00253-018-8845-4
doi: 10.1007/s00253-018-8845-4
Wang L, You L, Zhang J et al (2018) Biodegradation of sulfadiazine in microbial fuel cells: Reaction mechanism, biotoxicity removal and the correlation with reactor microbes. J Hazard Mater 360:402–411. https://doi.org/10.1016/j.jhazmat.2018.08.021
doi: 10.1016/j.jhazmat.2018.08.021
Wang N, Guo X, Xu J et al (2015) Sorption and transport of five sulfonamide antibiotics in agricultural soil and soil–manure systems. J Environ Sci Health B 50:23–33. https://doi.org/10.1080/03601234.2015.965612
doi: 10.1080/03601234.2015.965612
Wierzbowska IA, Hędrzak M, Popczyk B et al (2016) Predation of wildlife by free-ranging domestic dogs in Polish hunting grounds and potential competition with the grey wolf. Biol Conserv 201:1–9. https://doi.org/10.1016/j.biocon.2016.06.016
doi: 10.1016/j.biocon.2016.06.016
Wu Y, Williams M, Smith L et al (2012) Dissipation of sulfamethoxazole and trimethoprim antibiotics from manure-amended soils. J Environ Sci Health B 47:240–249. https://doi.org/10.1080/03601234.2012.636580
doi: 10.1080/03601234.2012.636580
Xu Y, Yu X, Xu B et al (2021) Sorption of pharmaceuticals and personal care products on soil and soil components: Influencing factors and mechanisms. Sci Total Environ 753:141891. https://doi.org/10.1016/j.scitotenv.2020.141891
doi: 10.1016/j.scitotenv.2020.141891
Yang JF, Ying GG, Yang LH et al (2009) Degradation behavior of sulfadiazine in soils under different conditions. J Environ Sci Health B 44:241–248
doi: 10.1080/03601230902728245
Yao J, Zeng X, Wang Z (2017) Enhanced degradation performance of sulfisoxazole using peroxymonosulfate activated by copper-cobalt oxides in aqueous solution: Kinetic study and products identification. Chem Eng J 330:345–354. https://doi.org/10.1016/j.cej.2017.07.155
doi: 10.1016/j.cej.2017.07.155
Yi X, Lin C, Ong EJL et al (2019a) Occurrence and distribution of trace levels of antibiotics in surface waters and soils driven by non-point source pollution and anthropogenic pressure. Chemosphere 216:213–223. https://doi.org/10.1016/j.chemosphere.2018.10.087
doi: 10.1016/j.chemosphere.2018.10.087
Yi X, Lin C, Ong EJL et al (2019b) Occurrence and distribution of trace levels of antibiotics in surface waters and soils driven by non-point source pollution and anthropogenic pressure. Chemosphere 216:213–223. https://doi.org/10.1016/j.chemosphere.2018.10.087
doi: 10.1016/j.chemosphere.2018.10.087
Yousef F, Mansour O, Herbali J, Author C (2018) Sulfonamides : Historical Discovery Development (Structure-Activity Relationship Notes). In-Vitro In-Vivo In-Silico J 1:1–15
Zhao F, Yang L, Chen L et al (2019) Bioaccumulation of antibiotics in crops under long-term manure application: Occurrence, biomass response and human exposure. Chemosphere 219:882–895. https://doi.org/10.1016/j.chemosphere.2018.12.076
doi: 10.1016/j.chemosphere.2018.12.076
Zheng L, Jin H, Yu M et al (2019) Degradation of sulfamethoxazole by electrochemically activated persulfate using iron anode. Int J Chem React Eng 17:1–14. https://doi.org/10.1515/ijcre-2018-0160
doi: 10.1515/ijcre-2018-0160
Zhu Y, Qiu S, Deng F et al (2019) Enhanced degradation of sulfathiazole by electro-Fenton process using a novel carbon nitride modified electrode. Carbon N Y 145:321–332. https://doi.org/10.1016/j.carbon.2019.01.032
doi: 10.1016/j.carbon.2019.01.032