Unraveling the Interaction Mechanism of the Compounds From Cladophora sp to Recognize Prospective Larvicidal and Bactericidal Activities: In vitro and In Silico Approaches.
Antibacterial
Cladophora sp
Density functional theory
In silico docking
Larvicidal
Molecular dynamic simulation
Journal
Molecular biotechnology
ISSN: 1559-0305
Titre abrégé: Mol Biotechnol
Pays: Switzerland
ID NLM: 9423533
Informations de publication
Date de publication:
16 Oct 2023
16 Oct 2023
Historique:
received:
15
05
2023
accepted:
01
09
2023
medline:
16
10
2023
pubmed:
16
10
2023
entrez:
16
10
2023
Statut:
aheadofprint
Résumé
The present investigation aims to validate the larvicidal and antibacterial potential of Cladophora sp through in vitro and in silico approaches. The presence of phytoconstituents, functional groups and the compounds responsible for antibacterial and larvicidal activity were assessed through FT-IR and GC-MS analyses which unveiled the existence of active secondary metabolites, hydroxyl, alkane and carbonyl groups. The larvicidal and antibacterial activity of algal extract were examined and revealed complete mortality and substantial zone of inhibition was observed against Culex quinquefasciatus and E. coli. To support the in vitro investigation in silico studies were performed. Molecular docking investigations of the selected compounds from GC-MS which exhibited favorable agreement with drug likeness and ADMET properties indicated robust interactions with the larvicidal and bacterial proteins showcasing considerable binding affinities. Notably, 1,2,4-Oxadiazole, 3-(1,3-benzodioxol-5-yl)-5-[(4-iodo-1H-pyrazol-1-yl) methyl]- exhibited strong interactions with the target proteins. Density Functional Theory revealed that the energy gap of the lead compound was reduced and substantiates the occurrence of intermolecular charge transfer. Molecular Dynamic simulations confirms the stability and flexibility of the lead compound. Hence, this investigation offers computational perspectives on the molecular interactions of Cladophora sp, suggesting its suitability as a promising biocontrol agent.
Identifiants
pubmed: 37843757
doi: 10.1007/s12033-023-00902-z
pii: 10.1007/s12033-023-00902-z
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Références
Priya, S. S., Vasantha-Srinivasan, P., Altemimi, A. B., Keerthana, R., Radhakrishnan, N., Senthil-Nathan, S., Kalaivani, K., Chandrasekar, N., Karthi, S., Ganesan, R., Alkanan, Z. T., Pal, T., Verma, O. P., & Proćków, J. (2023). Bioactive molecules derived from plants in managing dengue vector Aedes aegypti (Linn.). Molecules (Basel, Switzerland), 28(5), 2386.
pubmed: 36903635
Carlson, J., Olson, K., Higgs, S., & Beaty, B. (1995). Molecular genetic manipulation of mosquito vectors. Annual review of entomology, 40(1), 359–388.
pubmed: 7810990
Meier, C. J., Rouhier, M. F., & Hillyer, J. F. (2022). Chemical control of mosquitoes and the pesticide treadmill: a case for photosensitive insecticides as larvicides. Insects, 13(12), 1093.
pubmed: 36555003
pmcid: 9783766
Rao, P., Goswami, D., & Rawal, R. M. (2021). Revealing the molecular interplay of curcumin as Culex pipiens Acetylcholine esterase 1 (AChE1) inhibitor. Scientific Reports, 11, 17474.
pubmed: 34471175
pmcid: 8410813
Debnath, T., Bhowmik, S., Islam, T., & Hassan Chowdhury, M. M. (2018). Presence of multidrug-resistant bacteria on mobile phones of healthcare workers accelerates the spread of nosocomial infection and regarded as a threat to public health in Bangladesh. Journal of microscopy and ultrastructure, 6(3), 165–169.
pubmed: 30221143
pmcid: 6130244
Khan, F. M., & Gupta, R. (2020). Escherichia coli (E. coli) as an Indicator of Fecal Contamination in Groundwater: A Review. Sustainable Development of Water and Environment: Proceedings of the ICSDWE2020, 225–235.
Nikbakhtzadeh, M. R., & Fuentes, Y. (2022). Deterrent effects of glyphosate on oviposition and larval development of Culex quinquefasciatus. Journal of the American Mosquito Control Association, 38(3), 198–207.
pubmed: 35901290
Selvam, K., Sudhakar, C., Govarthanan, M., Thiyagarajan, P., Sengottaiyan, A., Senthilkumar, B., & Selvankumar, T. (2017). Eco-friendly biosynthesis and characterization of silver nanoparticles using Tinospora cordifolia (Thunb.) Miers and evaluate its antibacterial, antioxidant potential. Journal of Radiation Research and Applied Sciences, 10(1), 6–12.
Wang, Y., Zhou, P., Zhou, W., Huang, S., Peng, C., Li, D., & Li, G. (2023). Network analysis indicates microbial assemblage differences in life stages of cladophora. Applied and Environmental Microbiology, 89(3), e02112-e2122.
pubmed: 36880773
pmcid: 10057885
Cakmak, U., Tuncay, F. O., & Kolcuoğlu, Y. (2022). Cold active α-amylase obtained from Cladophora hutchinsiae-purification, biochemical characterization and some potential applications. Food Bioscience, 50, 102078.
Holmes, M. J., & Lewis, R. J. (2022). Origin of ciguateric fish: Quantitative modelling of the flow of ciguatoxin through a marine food chain. Toxins, 14(8), 534.
pubmed: 36006196
pmcid: 9414493
Srinithi, R., Sangavi, P., Nachammai, K. T., Kumar, S. G., & Langeswaran, K. (2023). Perspective of algae materials 2.0. In Algae Materials (pp. 383–397). Academic Press. Elsevier
Dussault, D., Vu, K. D., Vansach, T., Horgen, F. D., & Lacroix, M. (2016). Antimicrobial effects of marine algal extracts and cyanobacterial pure compounds against five foodborne pathogens. Food Chemistry, 199, 114–118.
pubmed: 26775951
Nachammai, K. T., Ramachandran, S., Nagarajan, C., Kulanthaivel, L., Subbaraj, G. K., Chandrasekaran, K., Paramasivan, V., & Subramanian, S. (2023). Exploration of bioinformatics on microbial fuel cell technology: trends, challenges, and future prospects. Journal of Chemistry, 2023, 1–8.
Magda, F., Deyab, M. A., El-Shanawany, R. S., & Ahmed, S. E. A. (2022). Fatty acids of Cladophora glomerata and Chaetomorpha vieillardii (Cladophoraceae) of different niches inhibit the pathogenic microbial growth. Aquatic Botany, 176, 103461.
Michalak, I., & Messyasz, B. (2021). Concise review of Cladophora spp.: macroalgae of commercial interest. Journal of Applied Phycology, 33(1), 133–166.
Sindhu, M. S., Poonkothai, M., & Thirumalaisamy, R. (2022). Phenolic and terpene compounds from Plectranthus amboinicus (Lour.) Spreng Act as promising hepatic anticancer agents screened through in silico and in vitro approaches. South African Journal of Botany, 149, 145–159.
Adusei, S., Otchere, J. K., Oteng, P., Mensah, R. Q., & Tei-Mensah, E. (2019). Phytochemical analysis, antioxidant and metal chelating capacity of Tetrapleura tetraptera. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02762
doi: 10.1016/j.heliyon.2019.e02762
pubmed: 31844702
pmcid: 6895743
Jain, P. K., Soni, A., Jain, P., & Bhawsar, J. (2016). Phytochemical analysis of Mentha spicata plant extract using UV-VIS, FTIR and GC/MS technique. Journal of Chemical and Pharmaceutical Research, 8(2), 1–6.
Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45, 493–496.
pubmed: 5325707
WHO, 2005. World Health Organization: Guidelines for laboratory and field testing of mosquito larvicides. accessed 14 March 2022. https://apps.who.int/iris/handle/10665/69101 .
Kamaraj, C., Bagavan, A., Elango, G., Zahir, A. A., Rajakumar, G., Marimuthu, S., Santhoshkumar, T., & Rahuman, A. A. (2011). Larvicidal activity of medicinal plant extracts against Anopheles subpictus & Culex tritaeniorhynchus. The Indian Journal of Medical Research, 134(1), 101.
pubmed: 21808141
pmcid: 3171902
Hossain, M. A., Saliha, R. A. H., Afaf, M. W., Qasim, A. R., & Jamal, N. S. (2014). Comparison of chemical constituents and in vitro antimicrobial activities of three brands clove essential oils from Gulf region. Asian Pacific Journal of Tropical Disease, 4(4), 262–268. https://doi.org/10.1016/S2222-1808(14)60570-3
doi: 10.1016/S2222-1808(14)60570-3
Daina, A., Michielin, O., & Zoete, V. (2017). Swiss ADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717.
pubmed: 28256516
pmcid: 5335600
Trott, O., & Olson, A. J. (2010). Auto Dock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
pubmed: 19499576
pmcid: 3041641
Huey, R., Morris, G. M., & Forli, S. (2012). Using auto dock 4 and auto dock vina with auto dock tools: a tutorial. The Scripps Research Institute Molecular Graphics Laboratory, 10550(92037), 1000.
Rajesh Kumar, T., Premkumar, R., Langeswaran, K., Ramavenkateswari, K., Anitha, S., Sangavi, P., & Sangeetha, R. (2023). Virtual screening, molecular docking, molecular dynamics and quantum chemical studies on (2-methoxy-4-prop-2-enylphenyl) N-(2-methoxy-4-nitrophenyl) carbamate: a novel inhibitor of hepatocellular carcinoma. Journal of Biomolecular Structure and Dynamics, 1–10.
Anitha, S., Saranya, V., Shankar, R., & Sasirekha, V. (2022). Structural exploration of interactions of (+) catechin and (−) epicatechin with bovine serum albumin: Insights from molecular dynamics and spectroscopic methods. Journal of Molecular Liquids, 348, 118026.
Bochevarov, A. D., Harder, E., Hughes, T. F., Greenwood, J. R., Braden, D. A., Philipp, D. M., & Friesner, R. A. (2013). Jaguar: A high-performance quantum chemistry software program with strengths in life and materials sciences. International Journal of Quantum Chemistry, 113(18), 2110–2142.
Schrödinger Release 2023–1: Jaguar, Schrödinger, LLC, New York, NY, 2021.
Sangavi, P., Langeswaran, K., & Sangeetha, R. (2022). Identification and validation of hydroxychavicol from betel leaf as a promising breast cancer inhibitor: An In vitro and In silico analysis. Current Enzyme Inhibition, 18(2), 127–134.
Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic acids research, 46(W1), W257–W263.
pubmed: 29718510
pmcid: 6031011
Sangeetha, R., Prabha, A. Y. J. E., Lakshmi, A., Sangavi, P., & Langeswaran, K. (2022). Molecular docking and dynamic simulations of Ocimumbasilicum compounds against HCC and structural, vibrational, quantum, and chemical investigation of campesterol. Journal of Biomolecular Structure and Dynamics, 40(24), 13997–14012.
pubmed: 34738880
Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of computational chemistry, 26(16), 1701–1718.
pubmed: 16211538
Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica Section D: Biological Crystallography, 60(8), 1355–1363.
pubmed: 15272157
Kirubhanand, C., Leonora, J. M., Anitha, S., Sangeetha, R., Nachammai, K. T., Langeswaran, K., & Kumar, S. G. (2023). Targeting potential receptor molecules in non-small cell lung cancer (NSCLC) using in silico approaches. Frontiers in Molecular Biosciences. https://doi.org/10.3389/fmolb.2023.1124563
doi: 10.3389/fmolb.2023.1124563
pubmed: 36845553
pmcid: 9947406
Sangavi, P., & Langeswaran, K. (2021). Anti-tumorigenic efficacy of tangeret in in liver cancer-an in-silico approach. Current Computer-Aided Drug Design, 17(3), 337–343.
Turner, P. J. (2005). XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology, Beaverton, OR, 2.
Sangeetha, R., Prabha, A. Y. J. E., Lakshmi, A., Sangavi, P., & Langeswaran, K. (2022). Molecular docking and dynamic simulations of Ocimum basilicum compounds against HCC and structural, vibrational, quantum, and chemical investigation of campesterol. Journal of Biomolecular Structure and Dynamics, 40(24), 13997–14012.
pubmed: 34738880
Raguraman, V., Stanley, A. L., MubarakAli, D., Narendrakumar, G., Thirugnanasambandam, R., Kirubagaran, R., & Thajuddin, N. (2018). Unraveling rapid extraction of fucoxanthin from Padina tetrastromatica: Purification, characterization and biomedical application. Process Biochemistry, 2018(73), 211–219.
Kang, O., Brice, O., Lee, Y., & Chae, H. (2010). Antibacterial activity of Ecklonia cava against. Foodborne Pathogens and Disease, 7, 435–441.
pubmed: 20001325
Qiu, S., Sun, H., Zhang, A. H., Xu, H. Y., Yan, G. L., Han, Y., & Wang, X. J. (2014). Natural alkaloids: basic aspects, biological roles, and future perspectives. Chinese Journal of Natural Medicines, 12(6), 401–406. https://doi.org/10.1016/S1875-5364(14)60063-7
doi: 10.1016/S1875-5364(14)60063-7
pubmed: 24969519
Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: an overview. Journal of Nutritional Science. https://doi.org/10.1017/jns.2016.41
doi: 10.1017/jns.2016.41
pubmed: 28620474
pmcid: 5465813
Harith, S. S., Mohd, S. N. A. S., Aziz, N. A., Mydin, M. M., & Nasir, N. T. S. (2018). Phytochemical screening and larvicidal activity of Murraya koenigii leaves extracts against mosquito larvae. Malaysian Journal of Analytical Sciences, 22(3), 471–476. https://doi.org/10.17576/mjas-2018-2203-14
doi: 10.17576/mjas-2018-2203-14
Wina, E., Muetzel, S., Hoffmann, E., Makkar, H. P. S., & Becker, K. (2005). Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Animal Feed Science and Technology, 121(1–2), 159–174. https://doi.org/10.1016/j.anifeedsci.2005.02.016
doi: 10.1016/j.anifeedsci.2005.02.016
Li, Y. M. S. Q., Sun, Q., Zhou, Z., Qin, J. X., Tao, J., Wang, J., & Fang, X. (2004). Identification of American ginseng from different regions using FT-IR and two-dimensional correlation IR spectroscopy. Vibrational Spectroscopy, 36, 227232.
Lomartire, S., & Gonçalves, A. M. M. (2023). An overview on antimicrobial potential of edible terrestrial plants and marine macroalgae rhodophyta and chlorophyta extracts. Marine Drugs, 21(3), 163. https://doi.org/10.3390/md21030163.PMID:36976212;PMCID:PMC10058896
doi: 10.3390/md21030163.PMID:36976212;PMCID:PMC10058896
pubmed: 36976212
pmcid: 10058896
Zablotowicz, R. M., Hoagland, R. E., & Wagner, S. C. (1996). Effect of saponins on the growth and activity of rhizosphere bacteria. Advances in Experimental Medicine and Biology., 405, 83–95.
pubmed: 8910697
Delcour, A. H. (2009). Outer membrane permeability and antibiotic resistance. Biochimica et Biophysica Acta., 1794(5), 808–816. https://doi.org/10.1016/j.bbapap.2008.11.005
doi: 10.1016/j.bbapap.2008.11.005
pubmed: 19100346
Kuniyoshi, M., Yamada, K., & Higa, T. (1985). A biologically active Diphenyl ether from the green alga Cladophora fascicularis. Experientia, 41(1985), 523–524.
Al-Saif, S. S. A. L., Abdel-Raouf, N., El-Wazanani, H. A., & Aref, I. A. (2014). Antibacterial substances from marine algae isolated from Jeddah coast of Red sea, Saudi Arabia. Saudi Journal of Biological Sciences, 21(1), 57–64.
pubmed: 24596500
Kirubakaran, N., Sathappan, S., & Sundaram, J. (2021). Larvicidal activity of Acorus calamus leaf extracts against the Aedes aegypti and Culex quinquefasciatus. 12(3), 375 – 383
Benelli, G. (2015). Research in mosquito control: Current challenges for a brighter future. Parasitology Research, 114(8), 2801–2805.
pubmed: 26093499
Pavela, R., & Benelli, G. (2016). Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends in Plant Science, 21(12), 1000–1007.
pubmed: 27789158
Rattan, R. S. (2010). Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection, 29(9), 913–920.
Moyes, C. L., Vontas, J., Martins, A. J., Ng, L. C., Koou, S. Y., Dusfour, I., Raghavendra, K., Pinto, J., Corbel, V., David, J.-P., & Weetman, D. (2017). Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Neglected Tropical Diseases, 11(7), e0005625.
pubmed: 28727779
pmcid: 5518996
Yu, K. X., Wong, C. L., Ahmad, R., & Jantan, I. (2015). Larvicidal activity, inhibition effect on development, histopathological alteration and morphological aberration induced by seaweed extracts in Aedes aegypti (Diptera: Culicidae). Asian Pacific Journal of Tropical Medicine, 8(12), 1006–1012.
pubmed: 26706671
Gowthish, K., & Kannan, R. (2019). Pesticidal potentials of some red algal seaweeds from Tuticorin coast against the tobacco cutworm Spodoptera litura Fab. (Lepidoptera: Noctuidae). International Journal of Scientific & Technology Research, 8(10), 502–506.
Lipinski, C. A. (2004). Lead-and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341.
pubmed: 24981612
Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68.
pubmed: 10746014
Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623.
pubmed: 12036371
Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877.
pubmed: 11052792
Muegge, I., Heald, S. L., & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841–1846.
pubmed: 11384230
Jia, C. Y., Li, J. Y., Hao, G. F., & Yang, G. F. (2020). A drug-likeness toolbox facilitates ADMET study in drug discovery. Drug Discovery Today, 25(1), 248–258.
pubmed: 31705979
Sugita, M., Sugiyama, S., Fujie, T., Yoshikawa, Y., Yanagisawa, K., Ohue, M., & Akiyama, Y. (2021). Large-scale membrane permeability prediction of cyclic peptides crossing a lipid bilayer based on enhanced sampling molecular dynamics simulations. Journal of Chemical Information and Modeling, 61(7), 3681–3695.
pubmed: 34236179
Chandrasekaran, B., Abed, S. N., Al-Attraqchi, O., Kuche, K., Tekade, R. K. (2018). Computer-aided prediction of pharmacokinetic (ADMET) properties. Dosage form Design Parameters, 2018. Academic Press, pp. 731–755.
Pricopie, A. I., Ionuț, I., Marc, G., Arseniu, A. M., Vlase, L., Grozav, A., Găină, L. L., Vodnar, D. C., Pîrnău, A., Tiperciuc, B., & Oniga, O. (2019). Design and synthesis of novel 1, 3-thiazole and 2-hydrazinyl-1, 3-thiazole derivatives as anti-Candida agents: In vitro antifungal screening, molecular docking study, and spectroscopic investigation of their binding interaction with bovine serum albumin. Molecules, 24(19), 3435.
pubmed: 31546673
pmcid: 6804233
Ntie-Kang, F., Lifongo, L. L., Mbah, J. A., Owono Owono, L. C., Megnassan, E., Mbaze, L. M. A., Judson, P. N., Sippl, W., & Efange, S. M. (2013). In silico drug metabolism and pharmacokinetic profiles of natural products from medicinal plants in the Congo basin. In Silico Pharmacology, 1, 1–11.
Van De Waterbeemd, H., & Gifford, E. (2003). ADMET in silico modelling: Towards prediction paradise? Nature Reviews Drug Discovery, 2(3), 192–204.
pubmed: 12612645
Wang, Z., Yang, H., Wu, Z., Wang, T., Li, W., Tang, Y., & Liu, G. (2018). In silico prediction of blood–brain barrier permeability of compounds by machine learning and resampling methods. ChemMedChem, 13(20), 2189–2201.
pubmed: 30110511
Issa, T. N., Wathieu, H., Ojo, A., Byers, W. S., & Dakshanamurthy, S. (2017). Drug metabolism in preclinical drug development: a survey of the discovery process, toxicology, and computational tools. Current Drug Metabolism, 18(6), 556–565.
pubmed: 28302026
pmcid: 5892202
Li, A. P. (2001). Screening for human ADME/Tox drug properties in drug discovery. Drug Discovery Today, 6(7), 357–366.
pubmed: 11267922
Guengerich, F. P. (1999). Cytochrome P-450 3A4: Regulation and role in drug metabolism. Annual Review of Pharmacology and Toxicology, 39(1), 1–17.
pubmed: 10331074
Williams, P. A., Cosme, J., Ward, A., Angove, H. C., Matak Vinković, D., & Jhoti, H. (2003). Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature, 424(6947), 464–468.
pubmed: 12861225
Lagorce, D., Douguet, D., Miteva, M. A., & Villoutreix, B. O. (2017). Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Scientific Reports, 7(1), 46277.
pubmed: 28397808
pmcid: 5387685
Berellini, G., Waters, N. J., & Lombardo, F. (2012). In silico prediction of total human plasma clearance. Journal of Chemical Information and Modeling, 52(8), 2069–2078.
pubmed: 22715914
Martin, Y. C. (2005). A bioavailability score. Journal of Medicinal Chemistry, 48(9), 3164–3170.
pubmed: 15857122
Mohapatra, R. K., Dhama, K., El-Arabey, A. A., Sarangi, A. K., Tiwari, R., Emran, T. B., Azam, M., Al-Rasayes, S. I., Raval, M. K., Seidel, V., & Abdalla, M. (2021). Repurposing benzimidazole and benzothiazole derivatives as potential inhibitors of SARS-CoV-2: DFT, QSAR, molecular docking, molecular dynamics simulation, and in-silico pharmacokinetic and toxicity studies. Journal of King Saud University-Science, 33(8), 101637.
pubmed: 34642560
pmcid: 8496942
Van Ogtrop, M. L., Mattie, H., Sekh, B. R., Van Strijen, E., & Van Furth, R. (1992). Comparison of the antibacterial efficacies of ampicillin and ciprofloxacin against experimental infections with Listeria monocytogenes in hydrocortisone-treated mice. Antimicrobial Agents and Chemotherapy, 36(11), 2375–2380.
pubmed: 1489180
pmcid: 284338
Lawler, S. P. (2017). Environmental safety review of methoprene and bacterially-derived pesticides commonly used for sustained mosquito control. Ecotoxicology and Environmental Safety, 139, 335–343.
pubmed: 28187397
Ford, N., Vitoria, M., Rangaraj, A., Norris, S. L., Calmy, A., & Doherty, M. (2020). Systematic review of the efficacy and safety of antiretroviral drugs against SARS, MERS or COVID-19: Initial assessment. Journal of the International AIDS Society, 23(4), e25489.
pubmed: 32293807
pmcid: 7158851
Alov, P., Tsakovska, I., & Pajeva, I. (2015). Computational studies of free radical-scavenging properties of phenolic compounds. Current Topics in Medicinal Chemistry, 15(2), 85–104.
pubmed: 25547098
pmcid: 4462847
Çinar, M. (2022). A combined 3D-QSAR, pharmacophore modelling, and molecular docking study for plastoquinone analogues. Eastern Anatolian Journal of Science, 8(2), 6–30.
Jayaprakash, P., Biswal, J., Rangaswamy, R., & Jeyakanthan, J. (2022). Designing of potent anti-diabetic molecules by targeting SIK2 using computational approaches. Molecular Diversity, 1–21.
Chinnasamy, S., Nagamani, S., & Muthusamy, K. (2015). Zn 2+ ion of the snake venom metalloproteinase (SVMP) plays a critical role in ligand binding: A molecular dynamics simulation study. RSC Advances, 5(86), 70566–70576.
Banerjee, P., & Ulker, O. C. (2022). Combinative ex vivo studies and in silico models ProTox-II for investigating the toxicity of chemicals used mainly in cosmetic products. Toxicology Mechanisms and Methods, 32(7), 542–548.
pubmed: 35287538
Zhao, D., Li, L., He, D., & Zhou, J. (2016). Molecular dynamics simulations of conformation changes of HIV-1 regulatory protein on graphene. Applied Surface Science, 377, 324–334.
Raman, L. S., Shanmuganathan, A., Chandrashekar, S., Kaliyaperumal, P., Perumal, E., Mudiganti, R. K. R., & Subramanian, S. (2023). Antioxidant, anti-inflammatory, and anticarcinogenic efficacy of an ayurvedic formulation: Amritotharanam kashyam. Advances in Pharmacological and Pharmaceutical Sciences, 2023, 1–13.
Yu, H., Wang, M. J., Xuan, N. X., Shang, Z. C., & Wu, J. (2015). Molecular dynamics simulation of the interactions between EHD1 EH domain and multiple peptides. Journal of Zhejiang University Science B, 16(10), 883–896.
pubmed: 26465136
pmcid: 4609540
Bharadwaj, K. K., Ahmad, I., Pati, S., Ghosh, A., Sarkar, T., Rabha, B., & Wan Rosli, W. I. (2022). Potent bioactive compounds from seaweed waste to combat cancer through bioinformatics investigation. Frontiers in Nutrition, 9, 889276.
pubmed: 35529456
pmcid: 9075044