Helper NLRs Nrc2 and Nrc3 act codependently with Prf/Pto and activate MAPK signaling to induce immunity in tomato.

DC3000 Pseudomonas syringae Ptr1 Solanum lycopersicum plant immunity tomato

Journal

The Plant journal : for cell and molecular biology
ISSN: 1365-313X
Titre abrégé: Plant J
Pays: England
ID NLM: 9207397

Informations de publication

Date de publication:
16 Oct 2023
Historique:
revised: 27 09 2023
received: 17 08 2023
accepted: 04 10 2023
medline: 16 10 2023
pubmed: 16 10 2023
entrez: 16 10 2023
Statut: aheadofprint

Résumé

Plant intracellular immune receptors, primarily nucleotide-binding, leucine-rich repeat proteins (NLRs), detect pathogen effector proteins and activate NLR-triggered immunity (NTI). Recently, 'sensor' NLRs have been reported to function with 'helper' NLRs to activate immunity. We investigated the role of two helper NLRs, Nrc2 and Nrc3, on immunity in tomato to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) mediated by the sensor NLR Prf and the Pto kinase. An nrc2/nrc3 mutant no longer activated Prf/Pto-mediated NTI to Pst containing the effectors AvrPto and AvrPtoB. An nrc3 mutant showed intermediate susceptibility between wild-type plants and a Prf mutant, while an nrc2 mutant developed only mild disease. These observations indicate that Nrc2 and Nrc3 act additively in Prf-/Pto-mediated immunity. We examined at what point Nrc2 and Nrc3 act in the Prf/Pto-mediated immune response. In the nrc2/3 mutant, programmed cell death (PCD) normally induced by constitutively active variants of AvrPtoB, Pto, or Prf was abolished, but that induced by M3Kα or Mkk2 was not. PCD induced by a constitutively active Nrc3 was also abolished in a Nicotiana benthamiana line with reduced expression of Prf. MAPK activation triggered by expression of AvrPto in the wild-type tomato plants was completely abolished in the nrc2/3 mutant. These results indicate that Nrc2 and Nrc3 act with Prf/Pto and upstream of MAPK signaling. Nrc2 and Nrc3 were not required for PCD triggered by Ptr1, another sensor NLR-mediating Pst resistance, although these helper NLRs do appear to be involved in resistance to certain Pst race 1 strains.

Identifiants

pubmed: 37844152
doi: 10.1111/tpj.16502
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Science Foundation
ID : IOS-1546625

Informations de copyright

© 2023 Society for Experimental Biology and John Wiley & Sons Ltd.

Références

Adachi, H., Contreras, M.P., Harant, A., Wu, C.H., Derevnina, L., Sakai, T. et al. (2019) An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. Elife, 8, e49956.
Adachi, H., Sakai, T., Harant, A., Pai, H., Honda, K., Toghani, A. et al. (2023) An atypical NLR protein modulates the NRC immune receptor network in Nicotiana benthamiana. PLoS Genetics, 19, e1010500.
Ahn, H.K., Lin, X., Olave-Achury, A.C., Derevnina, L., Contreras, M.P., Kourelis, J. et al. (2023) Effector-dependent activation and oligomerization of plant NRC class helper NLRs by sensor NLR immune receptors Rpi-amr3 and Rpi-amr1. The EMBO Journal, 42, e111484.
Ahn, Y.J., Kim, H., Choi, S., Mazo-Molina, C., Prokchorchik, M., Zhang, N. et al. (2023) Ptr1 and ZAR1 immune receptors confer overlapping and distinct bacterial pathogen effector specificities. The New Phytologist, 239, 1935-1953.
Almeida, N.F., Yan, S., Lindeberg, M., Studholme, D.J., Schneider, D.J., Condon, B. et al. (2009) A draft genome sequence of Pseudomonas syringae pv. tomato T1 reveals a type III effector repertoire significantly divergent from that of Pseudomonas syringae pv. tomato DC3000. Molecular Plant-Microbe Interactions, 22, 52-62.
Balint-Kurti, P. (2019) The plant hypersensitive response: concepts, control and consequences. Molecular Plant Pathology, 20, 1163-1178.
Balmuth, A. & Rathjen, J.P. (2007) Genetic and molecular requirements for function of the Pto/Prf effector recognition complex in tomato and Nicotiana benthamiana. The Plant Journal, 51, 978-990.
Belkhadir, Y., Nimchuk, Z., Hubert, D.A., Mackey, D. & Dangl, J.L. (2004) Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell, 16, 2822-2835.
Buell, C.R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I.T., Gwinn, M.L. et al. (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proceedings of the National Academy of Sciences of the United States of America, 100, 10181-10186.
Clarke, C.R., Chinchilla, D., Hind, S.R., Taguchi, F., Miki, R., Ichinose, Y. et al. (2013) Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. The New Phytologist, 200, 847-860.
Collier, S.M., Hamel, L.P. & Moffett, P. (2011) Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Molecular Plant-Microbe Interactions, 24, 918-931.
Contreras, M.P., Pai, H., Tumtas, Y., Duggan, C., Yuen, E.L.H., Cruces, A.V. et al. (2023) Sensor NLR immune proteins activate oligomerization of their NRC helpers in response to plant pathogens. The EMBO Journal, 42, e111519.
Cui, H., Tsuda, K. & Parker, J.E. (2015) Effector-triggered immunity: from pathogen perception to robust defense. Annual Review of Plant Biology, 66, 487-511.
Dangl, J.L., Horvath, D.M. & Staskawicz, B.J. (2013) Pivoting the plant immune system from dissection to deployment. Science, 341, 746-751.
DeFalco, T.A. & Zipfel, C. (2021) Molecular mechanisms of early plant pattern-triggered immune signaling. Molecular Cell, 81, 3449-3467.
del Pozo, O., Pedley, K.F. & Martin, G.B. (2004) MAPKKKα is a positive regulator of cell death associated with both plant immunity and disease. The EMBO Journal, 23, 3072-3082.
Derevnina, L., Contreras, M.P., Adachi, H., Upson, J., Vergara Cruces, A., Xie, R. et al. (2021) Plant pathogens convergently evolved to counteract redundant nodes of an NLR immune receptor network. PLoS Biology, 19, e3001136.
Dillon, M.M., Almeida, R.N.D., Laflamme, B., Martel, A., Weir, B.S., Desveaux, D. et al. (2019) Molecular evolution of pseudomonas syringae type III secreted effector proteins. Frontiers in Plant Science, 10, 418.
Du, X., Miao, M., Ma, X., Liu, Y., Kuhl, J.C., Martin, G.B. et al. (2012) Plant programmed cell death caused by an autoactive form of Prf is suppressed by co-expression of the Prf LRR domain. Molecular Plant, 5, 1058-1067.
Ekengren, S., Liu, Y., Schiff, M., Dinesh-Kumar, S. & Martin, G. (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. The Plant Journal, 36, 905-917.
Forderer, A., Li, E., Lawson, A.W., Deng, Y.N., Sun, Y., Logemann, E. et al. (2022) A wheat resistosome defines common principles of immune receptor channels. Nature, 610, 532-539.
Gabriels, S.H.E.J., Vossen, J.H., Ekengren, S.K., van Ooijen, G., Abd-El-Haliem, A.M., van den Berg, G.C.M. et al. (2007) An NB-LRR protein required for HR signalling mediated by both extra- and intracellular resistance proteins. Plant Journal, 50, 14-28.
Gong, Y., Tian, L., Kontos, I., Li, J. & Li, X. (2023) Plant immune signaling network mediated by helper NLRs. Current Opinion in Plant Biology, 73, 102354.
Gonzalez-Tobon, J., Diaz, A., Helmann, T.C., Karp, M.A., Daughtrey, M., Stodghill, P.V. et al. (2023) Genomic insights into a pseudomonas amygdali isolate from Hibiscus rosa-sinensis. Genomics, 115, 110600.
Gutierrez, J.R., Balmuth, A.L., Ntoukakis, V., Mucyn, T.S., Gimenez-Ibanez, S., Jones, A.M. et al. (2010) Prf immune complexes of tomato are oligomeric and contain multiple Pto-like kinases that diversify effector recognition. The Plant Journal, 61, 507-518.
Jacobs, T.B., Zhang, N., Patel, D. & Martin, G.B. (2017) Generation of a collection of mutant tomato lines using pooled CRISPR libraries. Plant Physiology, 174, 2023-2037.
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S. et al. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647-1649.
Kim, B., Choi, J. & Segonzac, C. (2022) Tackling multiple bacterial diseases of Solanaceae with a handful of immune receptors. Horticulture, Environment, and Biotechnology, 63, 149-160.
Kim, B., Kim, I., Yu, W., Li, M., Kim, H., Ahn, Y.J. et al. (2023) The Ralstonia pseudosolanacearum effector RipE1 is recognized at the plasma membrane by NbPtr1, the Nicotiana benthamiana homologue of Pseudomonas tomato race 1. Molecular Plant Pathology, 24, 1312-1318.
Kourelis, J. & Adachi, H. (2022) Activation and regulation of NLR immune receptor networks. Plant & Cell Physiology, 63, 1366-1377.
Kourelis, J., Contreras, M.P., Harant, A., Pai, H., Ludke, D., Adachi, H. et al. (2022) The helper NLR immune protein NRC3 mediates the hypersensitive cell death caused by the cell-surface receptor Cf-4. PLoS Genetics, 18, e1010414.
Kud, J., Zhao, Z., Du, X., Liu, Y., Zhao, Y. & Xiao, F. (2013) SGT1 interacts with the Prf resistance protein and is required for Prf accumulation and Prf-mediated defense signaling. Biochemical and Biophysical Research Communications, 431, 501-505.
Kunkeaw, S., Tan, S. & Coaker, G. (2010) Molecular and evolutionary analyses of Pseudomonas syringae pv. tomato race 1. Molecular Plant-Microbe Interactions, 23, 415-424.
Lin, N.C. & Martin, G.B. (2005) An avrPto/avrPtoB mutant of Pseudomonas syringae pv. tomato DC3000 does not elicit Pto-mediated resistance and is less virulent on tomato. Molecular Plant-Microbe Interactions, 18, 43-51.
Lolle, S., Stevens, D. & Coaker, G. (2020) Plant NLR-triggered immunity: from receptor activation to downstream signaling. Current Opinion in Immunology, 62, 99-105.
Martin, G.B. (2012) Suppression and activation of the plant immune system by Pseudomonas syringae effectors AvrPto and AvrPtoB. In: Martin, F. & Kamoun, S. (Eds.) Effectors in plant-microbe interactions. Wiley-Blackwell: Ames, IA, pp. 123-154.
Martin, R., Qi, T.C., Zhang, H.B., Liu, F.R., King, M., Toth, C. et al. (2020) Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science, 370, 1185.
Mazo-Molina, C., Mainiero, S., Haefner, B.J., Bednarek, R., Zhang, J., Feder, A. et al. (2020) Ptr1 evolved convergently with RPS2 and Mr5 to mediate recognition of AvrRpt2 in diverse solanaceous species. The Plant Journal, 103, 1433-1445.
Mazo-Molina, C., Mainiero, S., Hind, S.R., Kraus, C.M., Vachev, M., Maviane-Macia, F. et al. (2019) The Ptr1 locus of Solanum lycopersicoides confers resistance to race 1 strains of Pseudomonas syringae pv. tomato and to Ralstonia pseudosolanacearum by recognizing the type III effectors AvrRpt2 and RipBN. Molecular Plant-Microbe Interactions, 32, 949-960.
Melech-Bonfil, S. & Sessa, G. (2010) Tomato MAPKKKepsilon is a positive regulator of cell-death signaling networks associated with plant immunity. The Plant Journal, 64, 379-391.
Mucyn, T.S., Clemente, A., Andriotis, V.M., Balmuth, A.L., Oldroyd, G.E., Staskawicz, B.J. et al. (2006) The tomato NBARC-LRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell, 18, 2792-2806.
Ngou, B.P.M., Ahn, H.K., Ding, P. & Jones, J.D.G. (2021) Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature, 592, 110-115.
Ntoukakis, V., Balmuth, A.L., Mucyn, T.S., Gutierrez, J.R., Jones, A.M. & Rathjen, J.P. (2013) The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation. PLoS Pathogens, 9, e1003123.
Oh, C.-S. & Martin, G.B. (2011a) Effector-triggered immunity mediated by the Pto kinase. Trends in Plant Science, 16, 132-140.
Oh, C.-S. & Martin, G.B. (2011b) Tomato 14-3-3 protein TFT7 interacts with a MAP kinase kinase to regulate immunity-associated programmed cell death mediated by diverse disease resistance proteins. The Journal of Biological Chemistry, 286, 14129-14136.
Oh, C.-S., Pedley, K.F. & Martin, G.B. (2010) Tomato 14-3-3 protein 7 positively regulates immunity-associated programmed cell death by enhancing protein abundance and signaling ability of MAPKKK alpha. Plant Cell, 22, 260-272.
Pedley, K. & Martin, G. (2004) Identification of MAPKs and their possible MAPK kinase activators involved in the Pto-mediated defense response of tomato. Journal of Biological Chemistry, 279, 49229-49235.
Pedley, K.F. & Martin, G.B. (2003) Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annual Review of Phytopathology, 41, 215-243.
Pombo, M.A., Zheng, Y., Fernandez-Pozo, N., Dunham, D.M., Fei, Z. & Martin, G.B. (2014) Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins. Genome Biology, 15, 492.
Qi, D. & Innes, R.W. (2013) Recent advances in plant NLR structure, function, localization, and signaling. Frontiers in Immunology, 4, 348.
Rathjen, J.P., Chang, J.H., Staskawicz, B.J. & Michelmore, R.W. (1999) Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of AvrPto. The EMBO Journal, 18, 3232-3240.
Roberts, R., Hind, S.R., Pedley, K.F., Diner, B.A., Szarzanowicz, M.J., Luciano-Rosario, D. et al. (2019) Mai1 protein acts between host recognition of pathogen effectors and mitogen-activated protein kinase signaling. Molecular Plant-Microbe Interactions, 32, 1496-1507.
Ronald, P.C., Salmeron, J.M., Carland, F.M. & Staskawicz, B.J. (1992) The cloned avirulence gene avrPto induces disease resistance in tomato cultivars containing the Pto resistance gene. Journal of Bacteriology, 174, 1604-1611.
Rosli, H.G., Zheng, Y., Pombo, M.A., Zhong, S., Bombarely, A., Fei, Z. et al. (2013) Transcriptomics-based screen for genes induced by flagellin and repressed by pathogen effectors identifies a cell wall-associated kinase involved in plant immunity. Genome Biology, 14, R139.
Saijo, Y., Loo, E.P. & Yasuda, S. (2018) Pattern recognition receptors and signaling in plant-microbe interactions. The Plant Journal, 93, 592-613.
Salmeron, J.M., Oldroyd, G.E., Rommens, C.M., Scofield, S.R., Kim, H.S., Lavelle, D.T. et al. (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell, 86, 123-133.
Saur, I.M., Conlan, B.F. & Rathjen, J.P. (2015) The N-terminal domain of the tomato immune protein Prf contains multiple homotypic and Pto kinase interaction sites. The Journal of Biological Chemistry, 290, 11258-11267.
Shabab, M., Shindo, T., Gu, C., Kaschani, F., Pansuriya, T., Chintha, R. et al. (2008) Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato. Plant Cell, 20, 1169-1183.
Shao, Z.Q., Xue, J.Y., Wu, P., Zhang, Y.M., Wu, Y., Hang, Y.Y. et al. (2016) Large-scale analyses of angiosperm nucleotide-binding site-leucine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiology, 170, 2095-2109.
Sheikh, A.H., Zacharia, I., Pardal, A.J., Dominguez-Ferreras, A., Sueldo, D.J., Kim, J.G. et al. (2023) Dynamic changes of the Prf/Pto tomato resistance complex following effector recognition. Nature Communications, 14, 2568.
Shimizu, M., Hirabuchi, A., Sugihara, Y., Abe, A., Takeda, T., Kobayashi, M. et al. (2022) A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Proceedings of the National Academy of Sciences of the United States of America, 119, e2116896119.
Su, J., Yang, L., Zhu, Q., Wu, H., He, Y., Liu, Y. et al. (2018) Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biology, 16, e2004122.
Su, J., Zhang, M., Zhang, L., Sun, T., Liu, Y., Lukowitz, W. et al. (2017) Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid. Plant Cell, 29, 526-542.
Sueldo, D.J., Shimels, M., Spiridon, L.N., Caldararu, O., Petrescu, A.J., Joosten, M.H. et al. (2015) Random mutagenesis of the nucleotide-binding domain of NRC1 (NB-LRR required for hypersensitive response-associated cell death-1), a downstream signalling nucleotide-binding, leucine-rich repeat (NB-LRR) protein, identifies gain-of-function mutations in the nucleotide-binding pocket. The New Phytologist, 208, 210-223.
Tang, X., Frederick, R.D., Zhou, J., Halterman, D.A., Jia, Y. & Martin, G.B. (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science, 274, 2060-2063.
Tena, G., Asai, T., Chiu, W.L. & Sheen, J. (2001) Plant mitogen-activated protein kinase signaling cascades. Current Opinion in Plant Biology, 4, 392-400.
Tsakiri, D., Kotsaridis, K., Marinos, S., Michalopoulou, V.A., Kokkinidis, M. & Sarris, P.F. (2023) The core effector RipE1 of Ralstonia solanacearum interacts with and cleaves Exo70B1 and is recognized by the Ptr1 immune receptor. bioRxiv. 2022.2008.2031.506019.
van der Hoorn, R.A. & Kamoun, S. (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell, 20, 2009-2017.
Wang, J., Chern, M. & Chen, X. (2020) Structural dynamics of a plant NLR resistosome: transition from autoinhibition to activation. Science China. Life Sciences, 63, 617-619.
Wang, J., Hu, M., Wang, J., Qi, J., Han, Z., Wang, G. et al. (2019) Reconstitution and structure of a plant NLR resistosome conferring immunity. Science, 364, eaav5870.
Wu, C.H., Abd-El-Haliem, A., Bozkurt, T.O., Belhaj, K., Terauchi, R., Vossen, J.H. et al. (2017) NLR network mediates immunity to diverse plant pathogens. Proceedings of the National Academy of Sciences of the United States of America, 114, 8113-8118.
Wu, C.H., Adachi, H., De la Concepcion, J.C., Castells-Graells, R., Nekrasov, V. & Kamoun, S. (2020) NRC4 gene cluster is not essential for bacterial flagellin-triggered immunity. Plant Physiology, 182, 455-459.
Wu, C.-H., Belhaj, K., Bozkurt, T.O., Birk, M.S. & Kamoun, S. (2016) Helper NLR proteins NRC2a/b and NRC3 but not NRC1 are required for Pto-mediated cell death and resistance in Nicotiana benthamiana. The New Phytologist, 209, 1344-1352.
Wu, C.H. & Kamoun, S. (2021) Tomato Prf requires NLR helpers NRC2 and NRC3 to confer resistance against the bacterial speck pathogen Pseudomonas syringae pv. tomato. Acta Horticulturae, 1316, 61-66.
Wu, C.-H., Krasileva, K.V., Banfield, M.J., Terauchi, R. & Kamoun, S. (2015) The “sensor domains” of plant NLR proteins: more than decoys? Frontiers in Plant Science, 6, 134.
Wu, H.Y., Liu, K.H., Wang, Y.C., Wu, J.F., Chiu, W.L., Chen, C.Y. et al. (2014) AGROBEST: an efficient agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant Methods, 10, 19.
Yuan, M., Jiang, Z., Bi, G., Nomura, K., Liu, M., Wang, Y. et al. (2021) Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature, 592, 105-109.
Zhang, M. & Zhang, S. (2022) Mitogen-activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology, 64, 301-341.
Zhang, N., Hecht, C., Sun, X., Fei, Z. & Martin, G.B. (2022) Loss of function of the bHLH transcription factor Nrd1 in tomato enhances resistance to Pseudomonas syringae. Plant Physiology, 190, 1334-1348.
Zhang, N., Pombo, M.A., Rosli, H.G. & Martin, G.B. (2020) Tomato wall-associated kinase SlWak1 acts in an Fls2- and Fls3-dependent manner to promote apoplastic immune responses to Pseudomonas syringae. Plant Physiology, 183, 1869-1882.
Zhang, N., Roberts, H.M., Van Eck, J. & Martin, G.B. (2020) Generation and molecular characterization of CRISPR/Cas9-induced mutations in 63 immunity-associated genes in tomato reveals specificity and a range of gene modifications. Frontiers in Plant Science, 11, 1-13.
Zhao, Y.B., Liu, M.X., Chen, T.T., Ma, X., Li, Z.K., Zheng, Z. et al. (2022) Pathogen effector AvrSr35 triggers Sr35 resistosome assembly via a direct recognition mechanism. Science Advances, 8, eabq5108.
Zhou, J., Tang, X., Frederick, R. & Martin, G. (1998) Pathogen recognition and signal transduction by the Pto kinase. Journal of Plant Research, 111, 353-356.

Auteurs

Ning Zhang (N)

Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA.
Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA.

Joyce Gan (J)

Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA.

Lauren Carneal (L)

Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA.

Juliana González-Tobón (J)

Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA.

Melanie Filiatrault (M)

Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA.
United States Department of Agriculture-Agricultural Research Service, Ithaca, New York, 14853, USA.

Gregory B Martin (GB)

Boyce Thompson Institute for Plant Research, Ithaca, New York, 14853, USA.
Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York, 14853, USA.

Classifications MeSH