Bio-reductive synthesis of silver nanoparticles, its antibacterial efficiency, and possible toxicity in common carp fish (Cyprinus carpio).

antibacterial activity biological synthesis histological alterations silver nanoparticles toxicity

Journal

Microscopy research and technique
ISSN: 1097-0029
Titre abrégé: Microsc Res Tech
Pays: United States
ID NLM: 9203012

Informations de publication

Date de publication:
16 Oct 2023
Historique:
revised: 17 08 2023
received: 30 04 2023
accepted: 13 09 2023
medline: 17 10 2023
pubmed: 17 10 2023
entrez: 17 10 2023
Statut: aheadofprint

Résumé

The biological synthesis of nanoparticles is an emerging field of study that seeks to synthesize nanoparticles using non-chemical mechanisms such as microorganisms, plants, and animal blood serum. Among these, plants have gained particular attention due to their ease of handling, availability, and ability to synthesize a wide range of nanoparticles. Therefore, the current study aimed to fabricate the silver nanoparticles (AgNPs) using Chinese medicinal plants (CMP) for their possible toxicity in common carp fish (Cyprinus carpio). For this purpose, CMP was dried, ground, and used as a bio-reductive agent. The fabricated AgNPs were characterized and a well dispersed AgNPs were obtained. Moreover, the C. carpio was exposed to the AgNPs for bioaccumulation and histological alterations. The obtained findings revealed that the AgNPs were mostly accumulated in the intestines followed by the gills, muscles, liver, and brain. The accumulated AgNPs caused histological alterations in gills and intestines at the highest concentration (0.08 mg/L). However, very less alterations were caused by the lowest concentration, especially in the intestine. In conclusion, further in-depth research is needed to determine the risks associated with the usage of nanoparticles to reveal their harmful impacts on fish and the aquatic environment. HIGHLIGHTS: The biological fabrication of AgNPs is considered eco-friendly. Chinese medicinal plants play a significant role in AgNPs synthesis. AgNPs have excellent antibacterial activity. AgNPs are bioaccumulated in various organs of fish.

Identifiants

pubmed: 37846045
doi: 10.1002/jemt.24427
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Natural Science Foundation of China
ID : 22242031

Informations de copyright

© 2023 Wiley Periodicals LLC.

Références

Ali, I., Khan, S., Shah, K., Haroon, K., & Bian, L. (2021). Microscopic analysis of plant-mediated silver nanoparticle toxicity in rainbow trout fish (Oncorhynchus mykiss). Microscopy Research and Technique, 84, 2302-2310. https://doi.org/10.1002/jemt.23785
Babaei, A. A., Rafiee, M., Khodagholi, F., Ahmadpour, E., & Amereh, F. (2022). Nanoplastics-induced oxidative stress, antioxidant defense, and physiological response in exposed Wistar albino rats. Environmental Science and Pollution Research, 29, 1-13.
Bahrulolum, H., Nooraei, S., Javanshir, N., Tarrahimofrad, H., Mirbagheri, V. S., Easton, A. J., & Ahmadian, G. (2021). Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. Journal of Nanobiotechnology, 19(1), 1-26.
Bailey, J., Oliveri, A., & Levin, E. D. (2013). Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Research Part C: Embryo Today: Reviews, 99(1), 14-23.
Beyene, H. D., Werkneh, A. A., Bezabh, H. K., & Ambaye, T. G. (2017). Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustainable Materials and Technologies, 13, 18-23. https://doi.org/10.1016/j.susmat.2017.08.001
Dhand, C., Dwivedi, N., Loh, X. J., Ying, A. N. J., Verma, N. K., Beuerman, R. W., Lakshminarayanan, R., & Ramakrishna, S. (2015). Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Advances, 5(127), 105003-105037.
El-Houseiny, W., Mansour, M. F., Mohamed, W. A. M., Al-Gabri, N. A., El-Sayed, A. A., Altohamy, D. E., & Ibrahim, R. E. (2021). Silver nanoparticles mitigate Aeromonas hydrophila-induced immune suppression, oxidative stress, and apoptotic and genotoxic effects in Oreochromis niloticus. Aquaculture, 535, 736430. https://doi.org/10.1016/j.aquaculture.2021.736430
El-Samad, L. M., Bakr, N. R., El-Ashram, S., Radwan, E. H., Aziz, K. K. A., Hussein, H. K., El Wakil, A., & Hassan, M. A. (2022). Silver nanoparticles instigate physiological, genotoxicity, and ultrastructural anomalies in midgut tissues of beetles. Chemico-Biological Interactions, 367, 110166.
Faheem, M., & Bhandari, R. K. (2021). Detrimental effects of bisphenol compounds on physiology and reproduction in fish: A literature review. Environmental Toxicology and Pharmacology, 81, 103497.
Fu, P. P., Xia, Q., Hwang, H.-M., Ray, P. C., & Yu, H. (2014). Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis, 22(1), 64-75.
Garibo, D., Borbón-Nuñez, H. A., de León, J. N. D., García Mendoza, E., Estrada, I., Toledano-Magaña, Y., Tiznado, H., Ovalle-Marroquin, M., Soto-Ramos, A. G., & Blanco, A. (2020). Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scientific Reports, 10(1), 1-11.
Garner, K. L., & Keller, A. A. (2014). Emerging patterns for engineered nanomaterials in the environment: A review of fate and toxicity studies. Journal of Nanoparticle Research, 16, 1-28.
Gupta, Y. R., Sellegounder, D., Kannan, M., Deepa, S., Senthilkumaran, B., & Basavaraju, Y. (2016). Effect of copper nanoparticles exposure in the physiology of the common carp (Cyprinus carpio): Biochemical, histological and proteomic approaches. Aquaculture and Fisheries, 1, 15-23.
Kakakhel, M. A., Wu, F., Gu, J.-D., Feng, H., Shah, K., & Wang, W. (2019). Controlling biodeterioration of cultural heritage objects with biocides: A review. International Biodeterioration and Biodegradation, 143, 104721. https://doi.org/10.1016/j.ibiod.2019.104721
Kakakhel, M. A., Wu, F., Sajjad, W., Zhang, Q., Khan, I., Ullah, K., & Wang, W. (2021a). Long-term exposure to high-concentration silver nanoparticles induced toxicity, fatality, bioaccumulation, and histological alteration in fish (Cyprinus carpio). Environmental Sciences Europe, 33(1), 1-11. https://doi.org/10.1186/s12302-021-00453-7
Kakakhel, M. A., Bibi, N., Mahboub, H. H., Wu, F., Sajjad, W., Din, S. Z. U., Hefny, A. A., & Wang, W. (2023). Influence of biosynthesized nanoparticles exposure on mortality, residual deposition, and intestinal bacterial dysbiosis in Cyprinus carpio. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 263, 109473. https://doi.org/10.1016/j.cbpc.2022.109473
Kakakhel, M. A., Zaheer Ud Din, S., & Wang, W. (2021b). Evaluation of the antibacterial influence of silver nanoparticles against fish pathogenic bacterial isolates and their toxicity against common carp fish. Microscopy Research and Technique, 85, 1282-1288. https://doi.org/10.1002/jemt.23994
Karade, V. C., Patil, R. B., Parit, S. B., Kim, J. H., Chougale, A. D., & Dawkar, V. V. (2021). Insights into shape-based silver nanoparticles: A weapon to cope with pathogenic attacks. ACS Sustainable Chemistry & Engineering, 9(37), 12476-12507.
Khan, M., Khan, M. S. A., Borah, K. K., Goswami, Y., Hakeem, K. R., & Chakrabartty, I. (2021). The potential exposure and hazards of metal-based nanoparticles on plants and environment, with special emphasis on ZnO NPs, TiO2 NPs, and AgNPs: A review. Environmental Advances, 6, 100128.
Khosravi-Katuli, K., Shabani, A., Paknejad, H., & Imanpoor, M. R. (2018). Comparative toxicity of silver nanoparticle and ionic silver in juvenile common carp (Cyprinus carpio): Accumulation, physiology and histopathology. Journal of Hazardous Materials, 359, 373-381. https://doi.org/10.1016/j.jhazmat.2018.07.064
Konop, M., Damps, T., Misicka, A., & Rudnicka, L. (2016). Certain aspects of silver and silver nanoparticles in wound care: A minireview. Journal of Nanomaterials, 2016, 47.
Krishnasamy Sekar, R., Arunachalam, R., Anbazhagan, M., Palaniyappan, S., Veeran, S., Sridhar, A., & Ramasamy, T. (2023). Accumulation, chronicity, and induction of oxidative stress regulating genes through Allium cepa L. functionalized silver nanoparticles in freshwater common carp (Cyprinus carpio). Biological Trace Element Research, 201(2), 904-925.
Kumar, S., Verma, A. K., Singh, S. P., & Awasthi, A. (2022). Immunostimulants for shrimp aquaculture: Paving pathway towards shrimp sustainability. Environmental Science and Pollution Research, 30, 1-19.
Kuppusamy, S., Thavamani, P., Megharaj, M., & Naidu, R. (2015). Bioremediation potential of natural polyphenol rich green wastes: A review of current research and recommendations for future directions. Environmental Technology & Innovation, 4, 17-28.
Lacave, J. M., Vicario-Parés, U., Bilbao, E., Gilliland, D., Mura, F., Dini, L., Cajaraville, M. P., & Orbea, A. (2018). Waterborne exposure of adult zebrafish to silver nanoparticles and to ionic silver results in differential silver accumulation and effects at cellular and molecular levels. Science of the Total Environment, 642, 1209-1220.
Lead, J. R., Batley, G. E., Alvarez, P. J. J., Croteau, M., Handy, R. D., McLaughlin, M. J., Judy, J. D., & Schirmer, K. (2018). Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review. Environmental Toxicology and Chemistry, 37(8), 2029-2063.
Li, X., Liu, X., Li, T., Li, X., Feng, D., Kuang, X., Xu, J., Zhao, X., Sun, M., & Chen, D. (2017). SiO 2 nanoparticles cause depression and anxiety-like behavior in adult zebrafish. RSC Advances, 7(5), 2953-2963.
Madkour, L. H., & Madkour, L. H. (2019). Introduction to nanotechnology (NT) and nanomaterials (NMs). Nanoelectronic Materials: Fundamentals and Applications, 116, 1-47.
Manchanayake, T., Salleh, A., Amal, M. N. A., Yasin, I. S. M., & Zamri-Saad, M. (2023). Pathology and pathogenesis of Vibrio infection in fish: A review. Aquaculture Reports, 28, 101459. https://doi.org/10.1016/j.aqrep.2022.101459
Mansour, W. A. A., Abdelsalam, N. R., Tanekhy, M., Khaled, A. A., & Mansour, A. T. (2021). Toxicity, inflammatory and antioxidant genes expression, and physiological changes of green synthesis silver nanoparticles on Nile tilapia (Oreochromis niloticus) fingerlings. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 247, 109068. https://doi.org/10.1016/j.cbpc.2021.109068
McGillicuddy, E., Murray, I., Kavanagh, S., Morrison, L., Fogarty, A., Cormican, M., Dockery, P., Prendergast, M., Rowan, N., & Morris, D. (2017). Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Science of the Total Environment, 575, 231-246.
Mehwish, H. M., Rajoka, M. S. R., Xiong, Y., Cai, H., Aadil, R. M., Mahmood, Q., He, Z., & Zhu, Q. (2021). Green synthesis of a silver nanoparticle using Moringa oleifera seed and its applications for antimicrobial and sun-light mediated photocatalytic water detoxification. Journal of Environmental Chemical Engineering, 9(4), 105290.
Patil, R. B., & Chougale, A. D. (2021). Analytical methods for the identification and characterization of silver nanoparticles: A brief review. Materials Today: Proceedings, 47, 5520-5532.
Raj, A., Shah, P., & Agrawal, N. (2017). Sedentary behavior and altered metabolic activity by AgNPs ingestion in Drosophila melanogaster. Scientific Reports, 7(1), 15617.
Schultz, D. R., Tang, S., Miller, C., Gagnon, D., Shekh, K., Alcaraz, A. J. G., Janz, D. M., & Hecker, M. (2021). A multi-life stage comparison of silver nanoparticle toxicity on the early development of three Canadian fish species. Environmental Toxicology and Chemistry, 40(12), 3337-3350.
Shamaila, S., Sajjad, A. K. L., Farooqi, S. A., Jabeen, N., Majeed, S., & Farooq, I. (2016). Advancements in nanoparticle fabrication by hazard free eco-friendly green routes. Applied Materials Today, 5, 150-199.
Sharma, S., Singh, V. K., Kumar, A., & Mallubhotla, S. (2019). Effect of nanoparticles on oxidative damage and antioxidant defense system in plants. Molecular Plant Abiotic Stress: Biology and Biotechnology, 315-333.
Srivastava, S., & Bhargava, A. (2022). Green nanoparticles: The future of nanobiotechnology. Springer.
Stoletov, K., & Klemke, R. (2008). Catch of the day: Zebrafish as a human cancer model. Oncogene, 27(33), 4509-4520.
Tortella, G. R., Rubilar, O., Durán, N., Diez, M. C., Martínez, M., Parada, J., & Seabra, A. B. (2020). Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. Journal of Hazardous Materials, 390, 121974. https://doi.org/10.1016/j.jhazmat.2019.121974
Urnukhsaikhan, E., Bold, B.-E., Gunbileg, A., Sukhbaatar, N., & Mishig-Ochir, T. (2021). Antibacterial activity and characteristics of silver nanoparticles biosynthesized from Carduus crispus. Scientific Reports, 11(1), 21047. https://doi.org/10.1038/s41598-021-00520-2
Vibhute, P., Jaabir, M., & Sivakamavalli, J. (2023). In A. V. Kirthi, K. Loganathan, & I. Karunasagar (Eds.), Applications of nanoparticles in aquaculture BT-Nanotechnological approaches to the advancement of innovations in aquaculture (pp. 127-155). Springer International Publishing. https://doi.org/10.1007/978-3-031-15519-2_8
Xiao, B., Wang, X., Yang, J., Wang, K., Zhang, Y., Sun, B., Zhang, T., & Zhu, L. (2020). Bioaccumulation kinetics and tissue distribution of silver nanoparticles in zebrafish: The mechanisms and influence of natural organic matter. Ecotoxicology and Environmental Safety, 194, 110454.
Yaqoob, A. A., Umar, K., & Ibrahim, M. N. M. (2020). Silver nanoparticles: Various methods of synthesis, size affecting factors and their potential applications-a review. Applied Nanoscience, 10, 1369-1378.
Yu, S., Yin, Y., & Liu, J. (2013). Silver nanoparticles in the environment. Environmental Science: Processes & Impacts, 15(1), 78-92.
Zaheer Ud Din, S., Shah, K., Bibi, N., Mahboub, H., & Kakakhel, M. A. (2023). Recent insights into the silver nanomaterials: An overview of their transformation in the food webs and toxicity in the aquatic ecosystem. Water, Air, & Soil Pollution, 234(2), 114. https://doi.org/10.1007/s11270-023-06134-w

Auteurs

Mian Adnan Kakakhel (MA)

Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, Hubei, China.
College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei, China.

Nishita Narwal (N)

University School of Environment Management, Guru Gobind Singh Indraprastha University, New Delhi, India.

Alam Khan (A)

Sustainable Bioenergy and Biorefinery Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.
Department of Life Sciences, Abasyn University Islamabad Campus, Islamabad, Pakistan.

Huma Ayub (H)

Department of Zoology, Mirpur University of Science and Technology, Mirpur, Pakistan.

Zewen Jiang (Z)

Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, Hubei, China.
College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei, China.

Shi Xiaotao (S)

Hubei International Science and Technology Cooperation Base of Fish Passage, China Three Gorges University, Yichang, Hubei, China.
College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, Hubei, China.

Classifications MeSH