Insights into RAG Evolution from the Identification of "Missing Link" Family A RAGL Transposons.
DDE transposase
V(D)J recombination
evolution
recombination activating gene (RAG)
transposition
transposon molecular domestication
Journal
Molecular biology and evolution
ISSN: 1537-1719
Titre abrégé: Mol Biol Evol
Pays: United States
ID NLM: 8501455
Informations de publication
Date de publication:
03 Nov 2023
03 Nov 2023
Historique:
received:
09
08
2023
revised:
28
09
2023
accepted:
10
10
2023
medline:
9
11
2023
pubmed:
18
10
2023
entrez:
18
10
2023
Statut:
ppublish
Résumé
A series of "molecular domestication" events are thought to have converted an invertebrate RAG-like (RAGL) transposase into the RAG1-RAG2 (RAG) recombinase, a critical enzyme for adaptive immunity in jawed vertebrates. The timing and order of these events are not well understood, in part because of a dearth of information regarding the invertebrate RAGL-A transposon family. In contrast to the abundant and divergent RAGL-B transposon family, RAGL-A most closely resembles RAG and is represented by a single orphan RAG1-like (RAG1L) gene in the genome of the hemichordate Ptychodera flava (PflRAG1L-A). Here, we provide evidence for the existence of complete RAGL-A transposons in the genomes of P. flava and several echinoderms. The predicted RAG1L-A and RAG2L-A proteins encoded by these transposons intermingle sequence features of jawed vertebrate RAG and RAGL-B transposases, leading to a prediction of DNA binding, catalytic, and transposition activities that are a hybrid of RAG and RAGL-B. Similarly, the terminal inverted repeats (TIRs) of the RAGL-A transposons combine features of both RAGL-B transposon TIRs and RAG recombination signal sequences. Unlike all previously described RAG2L proteins, RAG2L-A proteins contain an acidic hinge region, which we demonstrate is capable of efficiently inhibiting RAG-mediated transposition. Our findings provide evidence for a critical intermediate in RAG evolution and argue that certain adaptations thought to be specific to jawed vertebrates (e.g. the RAG2 acidic hinge) actually arose in invertebrates, thereby focusing attention on other adaptations as the pivotal steps in the completion of RAG domestication in jawed vertebrates.
Identifiants
pubmed: 37850912
pii: 7321092
doi: 10.1093/molbev/msad232
pmc: PMC10629977
pii:
doi:
Substances chimiques
Homeodomain Proteins
0
DNA Transposable Elements
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : NIAID NIH HHS
ID : R01 AI137079
Pays : United States
Commentaires et corrections
Type : UpdateOf
Informations de copyright
© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
Déclaration de conflit d'intérêts
Conflict of interest statement. None declared.
Références
Annu Rev Genet. 2011;45:167-202
pubmed: 21854230
Science. 2000 Jul 7;289(5476):77-85
pubmed: 10884228
Nucleic Acids Res. 2015 Jul 1;43(W1):W389-94
pubmed: 25883141
Nat Chem Biol. 2016 Dec;12(12):1111-1118
pubmed: 27775714
Mol Biol Evol. 2013 May;30(5):1188-95
pubmed: 23418397
Annu Rev Biochem. 2002;71:101-32
pubmed: 12045092
Nature. 1998 Aug 20;394(6695):744-51
pubmed: 9723614
PLoS Biol. 2005 Jun;3(6):e181
pubmed: 15898832
Cell Rep. 2015 Jan 6;10(1):29-38
pubmed: 25543141
FEBS J. 2017 Jun;284(11):1590-1605
pubmed: 27973733
Curr Protoc Bioinformatics. 2016 Jun 20;54:5.6.1-5.6.37
pubmed: 27322406
Front Immunol. 2023 Jan 16;13:1066510
pubmed: 36726993
Genome Biol. 2006;7 Suppl 1:S10.1-12
pubmed: 16925832
Cell. 2016 Jun 30;166(1):102-14
pubmed: 27293192
J Exp Zool B Mol Dev Evol. 2016 Jan;326(1):47-60
pubmed: 26663879
Curr Biol. 2015 Nov 16;25(22):2939-50
pubmed: 26603774
Nat Rev Genet. 2011 Aug 18;12(9):615-27
pubmed: 21850042
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1904-1909
pubmed: 28174273
Bioinformatics. 2008 Mar 1;24(5):637-44
pubmed: 18218656
J Biol Chem. 2002 Feb 15;277(7):5040-6
pubmed: 11739391
Biol Direct. 2015 Apr 28;10:20
pubmed: 25928409
EMBO J. 2020 Nov 2;39(21):e105857
pubmed: 32945578
Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):E3206-15
pubmed: 23918392
Evol Dev. 2021 Jan;23(1):28-45
pubmed: 33283431
Nucleic Acids Res. 2016 Jul 8;44(W1):W430-5
pubmed: 27112573
Immunity. 2007 Oct;27(4):561-71
pubmed: 17936034
Nat Struct Mol Biol. 2020 Feb;27(2):119-126
pubmed: 32015552
Mol Cell. 2018 Apr 19;70(2):358-370.e4
pubmed: 29628308
Nucleic Acids Res. 2016 Nov 16;44(20):9624-9637
pubmed: 27436288
J Virol. 2015 Apr;89(7):3922-38
pubmed: 25609815
Natl Sci Rev. 2022 Apr 18;9(8):nwac073
pubmed: 36060303
Bioinformatics. 2012 Apr 15;28(8):1166-7
pubmed: 22368248
Immunol Rev. 2004 Aug;200:44-56
pubmed: 15242395
Genome Biol. 2022 Nov 18;23(1):243
pubmed: 36401278
Nucleic Acids Res. 2016 Apr 20;44(7):3448-63
pubmed: 26896805
Cell. 2015 Nov 19;163(5):1138-1152
pubmed: 26548953
J Exp Med. 2020 Sep 7;217(9):
pubmed: 32526772
Nature. 2007 Dec 13;450(7172):1106-10
pubmed: 18033247
Syst Biol. 2011 Oct;60(5):685-99
pubmed: 21540409
Nat Rev Immunol. 2022 Jun;22(6):353-370
pubmed: 34675378
Science. 1998 Jan 16;279(5349):384-8
pubmed: 9430589
Curr Biol. 2014 Nov 3;24(21):R1060-5
pubmed: 25517375
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
Semin Immunol. 2010 Feb;22(1):10-6
pubmed: 20004590
Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259
pubmed: 30931475
Biochemistry. 2000 Feb 22;39(7):1604-12
pubmed: 10677209
Nature. 2010 Jul 8;466(7303):258-62
pubmed: 20613843
Nucleic Acids Res. 2022 Jan 7;50(D1):D970-D979
pubmed: 34791383
Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W72-6
pubmed: 15980571
Nucleic Acids Res. 1994 May 25;22(10):1785-96
pubmed: 8208601
Nat Struct Mol Biol. 2020 Feb;27(2):127-133
pubmed: 32015553
Nucleic Acids Res. 2019 Jul 2;47(W1):W402-W407
pubmed: 31251384
PLoS One. 2010 Apr 13;5(4):e10168
pubmed: 20405015
Mol Biol Evol. 2017 Jul 1;34(7):1812-1819
pubmed: 28387841
Curr Opin Struct Biol. 2011 Jun;21(3):370-8
pubmed: 21439812
Genome Res. 2004 Jun;14(6):1188-90
pubmed: 15173120
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18993-8
pubmed: 18025461
BMC Bioinformatics. 2010 Aug 18;11:431
pubmed: 20718988
Cell. 1996 Oct 18;87(2):263-76
pubmed: 8861910
Mol Biol Evol. 2020 May 1;37(5):1530-1534
pubmed: 32011700
Cell. 1998 Aug 21;94(4):463-70
pubmed: 9727489
J Biol Chem. 2013 Feb 15;288(7):4692-703
pubmed: 23269674
Cell Rep. 2013 Sep 12;4(5):870-8
pubmed: 23994475
Nature. 2019 May;569(7754):79-84
pubmed: 30971819
Mol Cell Biol. 2006 Jun;26(12):4712-28
pubmed: 16738334
Nat Struct Mol Biol. 2012 Aug;19(8):834-6
pubmed: 22773102
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3728-33
pubmed: 16505374
Nature. 2019 Nov;575(7783):540-544
pubmed: 31723264
Immunogenetics. 2017 Jun;69(6):391-400
pubmed: 28451741
Nature. 2015 Feb 26;518(7540):507-11
pubmed: 25707801
BMC Biol. 2006 Dec 07;4:41
pubmed: 17156431
J Biol Chem. 2015 Jun 5;290(23):14618-25
pubmed: 25903130
Mol Biol Evol. 2017 Sep 1;34(9):2422-2424
pubmed: 28472384
Dev Comp Immunol. 2008;32(10):1221-30
pubmed: 18499250
Immunol Rev. 2004 Aug;200:90-114
pubmed: 15242399
Mob DNA. 2020 May 06;11:17
pubmed: 32399063
Nat Struct Mol Biol. 2009 May;16(5):499-508
pubmed: 19396172
Front Immunol. 2021 Jul 28;12:709165
pubmed: 34394111
Cell. 2015 Aug 13;162(4):751-65
pubmed: 26234156
Mol Biol Evol. 1996 Apr;13(4):549-55
pubmed: 8882498
Cell. 1996 Oct 18;87(2):253-62
pubmed: 8861909
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W5-9
pubmed: 18440982
Bioinformatics. 2015 Mar 15;31(6):857-63
pubmed: 25391399
Nucleic Acids Res. 2003 Nov 1;31(21):6180-90
pubmed: 14576304
Mol Biol Evol. 2012 Nov;29(11):3345-58
pubmed: 22617951
Syst Biol. 2010 May;59(3):307-21
pubmed: 20525638
Trends Genet. 2022 Jun;38(6):529-553
pubmed: 35307201
Mol Cell. 2009 Jun 12;34(5):535-44
pubmed: 19524534