Optimal heat emissivity control of n population system based on individual size-distribution.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
18 Oct 2023
Historique:
received: 16 03 2023
accepted: 13 09 2023
medline: 19 10 2023
pubmed: 19 10 2023
entrez: 18 10 2023
Statut: epublish

Résumé

This paper generalizes a class of controllability problems based on the scale structure population system model. Based on the comparison principle of linear systems, the solution of the nonlinear system model is obtained by referring to the fixed point theorem. The non-negative, boundedness, existence, and uniqueness of the solution of the system model are established. The optimality condition is described in detail by means of a normal cone and conjugate system under the condition of proving the continuous dependence of the state environment on the solution to control variables.

Identifiants

pubmed: 37853000
doi: 10.1038/s41598-023-42648-3
pii: 10.1038/s41598-023-42648-3
pmc: PMC10584966
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

17766

Subventions

Organisme : National Natural Science Foundation of China
ID : 51476073
Organisme : National Natural Science Foundation of China
ID : 51476073
Organisme : Gansu Province Natural Science Foundation
ID : 21R7RA304
Organisme : Gansu Province Natural Science Foundation
ID : 21R7RA304

Informations de copyright

© 2023. Springer Nature Limited.

Références

J Biol Dyn. 2007 Oct;1(4):305-19
pubmed: 22876819

Auteurs

Zhenggang Ba (Z)

School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.

Ye Wang (Y)

School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China. wangye@mail.lzjtu.cn.
Key Laboratory of Railway Vehicle Thermal Engineering, Ministry of Education of China, Lanzhou, 730070, China. wangye@mail.lzjtu.cn.

Classifications MeSH