High-resolution lithostratigraphy and reconnaissance sedimentology of Changotaung structure, Chittagong Tripura fold belt, Bengal Basin, Bangladesh.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
18 Oct 2023
18 Oct 2023
Historique:
received:
12
03
2023
accepted:
28
09
2023
medline:
19
10
2023
pubmed:
19
10
2023
entrez:
18
10
2023
Statut:
epublish
Résumé
Unlike other structures in the vicinity of the Chittagong Tripura Fold Belt, the Changotaung anticline is one of Bangladesh's least explored structures. An attempt has been made for the first time to understand and document sedimentary deposits, environments, structure, and tectonic activity based on the high-resolution outcrop and reconnaissance study with the knowledge of broad-brush geology. We found that Changotaung is a symmetrical box-folded structure with an extensive western flank where the amount of dip varies between 11° and 45°. The exposed Cenozoic succession was categorized into three separate sedimentary sequences and correlated with the conventional stratigraphic unit. A first-order simple Markovian approach was presented for the exposed litho-section in an effort to illustrate vertical facies variations in the Upper Surma group. We quantified that heterolithic bed mostly overlies both trough cross-bedding ([Formula: see text] = 0.706) and parallel laminated bed ([Formula: see text] according to the facies transition probability matrix. According to the results of the stationary distribution, there is a 40% chance of coming across heterolithic beds within the Upper Surma group during any given event that is completely random whereas trough cross-bedding, parallel laminated bed, cumulative sandstone facies, and cumulative shale facies shows around 10.8%, 15.2%, 20.6%, 13.4% probability. We hypothesized, based on the interpretive facies analysis, that the Chittagong Tripura fold belt region's Upper Surma Group underwent three interrelated depositional settings (wave-dominated shallow marine, tide-dominated shallow marine, and fluvio-deltaic distributary).
Identifiants
pubmed: 37853015
doi: 10.1038/s41598-023-43810-7
pii: 10.1038/s41598-023-43810-7
pmc: PMC10584892
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
17727Informations de copyright
© 2023. Springer Nature Limited.
Références
Steckler, M. S. et al. Locked and loading megathrust linked to active subduction beneath the Indo-Burman Ranges. Nat. Geosci. 9, 615–618 (2016).
Yang, L. et al. Indo-Burma passive amalgamation along the Kaladan Fault: Insights from zircon provenance in the Chittagong-Tripura Fold Belt (Bangladesh). GSA Bull. 132, 1953–1968 (2020).
Hossain, M. S. et al. Understanding the deformation structures and tectonics of the active orogenic fold-thrust belt: Insights from the outer indo-burman ranges. Lithosphere 2022, (2022).
Abdullah, R., Yeasmin, R., Mahbubul Ameen, S., Khanam, F. & Bari, Z. 2D structural modelling and hydrocarbon potentiality of the Sitakund structure, Chittagong Tripura Fold Belt, Bengal Basin, Bangladesh. J. Geol. Soc. India 85, 697–705 (2015).
Davies, C., Best, J. & Collier, R. Sedimentology of the Bengal shelf, Bangladesh: comparison of late Miocene sediments, Sitakund anticline, with the modern, tidally dominated shelf. Sedimentary Geol. 155, 271–300 (2003).
Afrin, T., Hossain, D. & Imam, M. Seismic characterization of the Semutang gas field, Bengal basin, Bangladesh. J. Geol. Soc. India 86, 547–552 (2015).
Alam, M. Tide-dominated sedimentation in the upper Tertiary succession of the Sitapahar anticline, Bangladesh. Tidal Signatures Mod Ancient Sediments 24, 329–341 (1995).
Julleh Jalalur Rahman, M., Sayem, A. & McCann, T. Geochemistry and provenance of the Miocene sandstones of the Surma group from the Sitapahar anticline, Southeastern Bengal Basin, Bangladesh. J. Geol. Soc. India 83, 447–456 (2014).
Khan, M. S. H., Hossain, M. S. & Chowdhury, K. R. Geomorphic implications and active tectonics of the Sitapahar Anticline–CTFB, Bangladesh. Bangladesh Geosci J. 23, 1–24 (2017).
Gani, M. R. & Alam, M. M. Sedimentation and basin-fill history of the Neogene clastic succession exposed in the southeastern fold belt of the Bengal Basin, Bangladesh: A high-resolution sequence stratigraphic approach. Sediment. Geol. 155, 227–270 (2003).
Gazi, M. Y., Apu, S. I., Sharmili, N. & Rahman, M. Z. Origin and characterization of clay deposits in the Dupi Tila Formation of the Bengal Basin, Bangladesh. Solid Earth Sci. 6, 313–327 (2021).
Haque, M. M. & Roy, M. K. Geology and sedimentary environment of the Surma Group of rocks, Bandarban anticline, Bandarban, Bangladesh. J. Nepal Geol. Soc. 62, 88–106 (2021).
Khan, M., Hossain, S., Hossain, M. & Uddin, M. Geology and active tectonics of the Lalmai hills, Bangladesh: An overview from Chittagong Tripura fold belt perspective. J. Geol. Soc. India 92, 713–720 (2018).
Hossain, S., Sharif Hossain Khan, M., Abdullah, R. & Chowdhury, K. R. Tectonic development of the Bengal Basin in relation to fold-thrust belt to the east and to the north. In Structural Geometry of Mobile Belts of the Indian Subcontinent 91–109 (Springer, 2020).
Maurin, T. & Rangin, C. Structure and kinematics of the Indo‐Burmese Wedge: Recent and fast growth of the outer wedge. Tectonics 28, (2009).
Persits, F. M., Wandrey, C. J., Milici, R. C., Manwar, A. Digital Geologic and Geophysical Data of Bangladesh: U.S. Geological Survey Open-File Report 97–470-H (2001).
Alam, M., Alam, M. M., Curray, J. R., Chowdhury, M. L. R. & Gani, M. R. An overview of the sedimentary geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history. Sediment. Geol. 155, 179–208 (2003).
Ingersoll, R. V., Dickinson, W. R., Graham, S. A., Chan, M. & Archer, A. Remnant-ocean submarine fans: largest sedimentary systems on Earth. Special Papers-Geological Society of America 191–208 (2003).
Hossain, M., Khan, M., Hossain, S., Chowdhury, K. R. & Abdullah, R. Synthesis of the tectonic and structural elements of the Bengal Basin and its surroundings. In Tectonics and Structural Geology: Indian Context 135–218 (Springer, 2019).
Reimann, K.-U. & Hiller, K. Geology of Bangladesh (1993).
Imam, M. B. & Hussain, M. A review of hydrocarbon habitats in Bangladesh. J. Petrol. Geol. 25, 31–52 (2002).
Khan, A. & Rahman, T. An analysis of the gravity field and tectonic evaluation of the northwestern part of Bangladesh. Tectonophysics 206, 351–364 (1992).
Curray, J. R., Emmel, F. J. & Moore, D. G. The Bengal Fan: Morphology, geometry, stratigraphy, history and processes. Mar. Petrol. Geol. 19, 1191–1223 (2002).
Uddin, A. & Lundberg, N. Cenozoic history of the Himalayan-Bengal system: Sand composition in the Bengal basin, Bangladesh. Geol. Soc. Am. Bull. 110, 497–511 (1998).
Evans, P. Tertiary succession in Assam. Trans. Min. Geol. Inst. India 27, 155–260 (1932).
Banerji, R. K. Post-Eocene biofacies, palaeoenvironments and palaeogeography of the Bengal Basin, India. Palaeogeography Palaeoclimatol. Palaeoecol. 45, 49–73 (1984).
Salt, C., Alam, M. M. & Hossain, M. M. Bengal Basin: current exploration of the hinge zone area of south-western Bangladesh (1986).
Alam, M. Geology and depositional history of Cenozoic sediments of the Bengal Basin of Bangladesh. Palaeogeography Palaeoclimatol. Palaeoecol. 69, 125–139 (1989).
Johnson, S. Y. & Nur Alam, A. M. Sedimentation and tectonics of the Sylhet trough, Bangladesh. Geol. Soc. Am. Bull. 103, 1513–1527 (1991).
Shamsuddin, A. & Khan, S. Geochemical criteria of migration of natural gases in the Miocene sediments of the Bengal Foredeep, Bangladesh. J. Southeast Asian Earth Sci. 5, 89–100 (1991).
Acharyya, S. Indo-Burma Range: A belt of accreted microcontinents, ophiolites and Mesozoic-Paleogene flyschoid sediments. Int. J. Earth Sci. 104, 1235–1251 (2015).
Morley, C., Naing, T. T., Searle, M. & Robinson, S. Structural and tectonic development of the Indo-Burma ranges. Earth-Sci. Rev. 200, 102992 (2020).
Hutchison, C. S. Geological evolution of South-east Asia Vol. 13 (Clarendon Press, 1989).
Dasgupta, S. & Nandy, D. Geological framework of the Indo-Burmese convergent margin with special reference to ophiolite emplacement. Indian J. Geol. 67, 110–125 (1995).
Gani, M. R. & Alam, M. M. Trench-slope controlled deep-sea clastics in the exposed lower Surma Group in the southeastern fold belt of the Bengal Basin, Bangladesh. Sediment. Geol. 127, 221–236 (1999).
Coe, A. L. Geological Field Techniques. (Wiley, 2010).
Kokaly, R. et al. Usgs spectral library version 7 data: Us geological survey data release. United States Geological Survey (USGS): Reston, VA, USA (2017).
Nass, A., van Gasselt, S., Jaumann, R. & Asche, H. Implementation of cartographic symbols for planetary mapping in geographic information systems. Planet. Space Sci. 59, 1255–1264 (2011).
Nichols, G. Sedimentology and Stratigraphy. (Wiley, 2009).
Subcommittee, G. D. Fgdc digital cartographic standard for geologic map symbolization (2006).
Khan, Z. A., Tewari, R. C. & Hota, R. N. Facies analysis, Markov model and linking of sub-environments in the early permian barakar coal measures of Godavari Gondwana Basin of Southeastern India. J Geol Soc India 95, 599–608 (2020).
Tewari, R. C. & Khan, Z. A. Structures and sequences in early Permian fluvial Barakar rocks of peninsular India Gondwana basins using binomial and Markov chain analysis. Arab J Geosci 10, 13 (2016).
Xu, H. & MacCarthy, I. A. J. Markov chain analysis of vertical facies sequences using a computer software package (SAVFS): Courtmacsherry Formation (Tournaisian), Southern Ireland. Comput. Geosci. 24, 131–139 (1998).
Miall, A. D. Markov chain analysis applied to an ancient alluvial plain succession. Sedimentology 20, 347–364 (1973).
Elfeki, A. M. M. & Dekking, F. M. Modelling subsurface heterogeneity by coupled Markov chains: Directional dependency, walther’s law and entropy. Geotech Geol Eng 23, 721–756 (2005).
Gingerich, P. D. Markov analysis of cyclic alluvial sediments. J. Sediment. Res. 39, 330–332 (1969).
Charles W. Harper, J. Facies models revisited: An examination of quantitative methods. Geosci. Canada (1984).
Powers, D. W. & Easterling, R. G. Improved methodology for using embedded Markov chains to describe cyclical sediments. J. Sediment. Res. 52, 913–923 (1982).
Selley, R. C. Studies of sequence in sediments using a simple mathematical device. Q. J. Geol. Soc. Lond. 125, 557–581 (1969).
Gani, M. R. & Alam, M. M. Fluvial facies architecture in small-scale river systems in the Upper Dupi Tila Formation, northeast Bengal Basin, Bangladesh. J. Asian Earth Sci. 24, 225–236 (2004).
Kulatilake, P. H. S. W. Modelling of cyclical stratigraphy using Markov chains. Int. J. Min. Geol. Eng. 5, 121–130 (1987).
Khanam, F., Rahman, M., Alam, M. M. & Abdullah, R. Sedimentology and basin-fill history of the Cenozoic succession of the Sylhet Trough, Bengal Basin, Bangladesh. Int. J. Earth Sci. 110, 193–212 (2021).
Rahman, M., Faupl, P. & Alam, M. M. Depositional facies of the subsurface Neogene Surma Group in the Sylhet Trough of the Bengal Basin, Bangladesh: record of tidal sedimentation. Int. J. Earth Sci. 98, 1971–1980 (2009).
Puy-Alquiza, M. J. et al. Facies analysis, stratigraphie architecture and depositional environments of the Guanajuato conglomerate in the Sierra de Guanajuato, Mexico. Boletín de la Sociedad Geol. Mexicana 69, 385–408 (2017).
Gazi, M. Y., Imam, B., Kabir, S. M. M. & Saha, S. K. Characterization of nodular structure in shale with a proposed growth model in the Sitakund anticline, Bengal basin, Bangladesh. Arab. J. Geosci. 2018; 11:23 11, 1–15 (2018).
Pittman, E. D., Larese, R. E. & Heald, M. T. Clay coats: Occurrence and relevance to preservation of porosity in sandstones (1992).
Yuan, G. et al. Feldspar dissolution, authigenic clays, and quartz cements in open and closed sandstone geochemical systems during diagenesis: Typical examples from two sags in Bohai Bay Basin, East China. AAPG Bull. 99, 2121–2154 (2015).
Hurst, A., Cartwright, J. & Duranti, D. Fluidization structures produced by upward injection of sand through a sealing lithology. Geol. Soc. Lond. Special Publ. 216, 123–138 (2003).
Hurst, A., Scott, A. & Vigorito, M. Physical characteristics of sand injectites. Earth-Sci. Rev. 106, 215–246 (2011).
Jonk, R. et al. Origin and timing of sand injection, petroleum migration, and diagenesis in Tertiary reservoirs, south Viking Graben, North Sea. AAPG Bull. 89, 329–357 (2005).
Palmer, A. N. Origin and morphology of limestone caves. Geol. Soc. Am. Bull. 103, 1–21 (1991).
Loucks, R. G. Paleocave carbonate reservoirs: Origins, burial-depth modifications, spatial complexity, and reservoir implications. AAPG Bull. 83, 1795–1834 (1999).
Aubrecht, R. et al. Venezuelan sandstone caves: a new view on their genesis, hydrogeology and speleothems. Geol. Croatica 61, 345–362 (2008).
Aubrecht, R. et al. Sandstone caves on Venezuelan tepuis: return to pseudokarst?. Geomorphology 132, 351–365 (2011).
Rahman, M. J. J. & McCann, T. Diagenetic history of the Surma group sandstones (Miocene) in the Surma Basin, Bangladesh. J. Asian Earth Sci. 45, 65–78 (2012).
Rahman, M. J. J. & Worden, R. H. Diagenesis and its impact on the reservoir quality of Miocene sandstones (Surma Group) from the Bengal Basin, Bangladesh. Mar. Petrol. Geol. 77, 898–915 (2016).
Lackey, J. S. & Valley, J. W. Complex patterns of fluid flow during wollastonite formation in calcareous sandstones at Laurel Mountain, Mt. Morrison Pendant, California. Geol. Soc. Am. Bull. 116, 76–93 (2004).
Lommatzsch, M., Exner, U., Gier, S. & Grasemann, B. Dilatant shear band formation and diagenesis in calcareous, arkosic sandstones, Vienna Basin (Austria). Mar. Petrol. Geol. 62, 144–160 (2015).
Tucker, M. E. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks. (Wiley, 2001).
Uddin, A. & Lundberg, N. Miocene sedimentation and subsidence during continent–continent collision, Bengal basin, Bangladesh. Sediment. Geol. 164, 131–146 (2004).
Khin, K., Sakai, T. & Zaw, K. Neogene syn-tectonic sedimentation in the eastern margin of Arakan-Bengal basins, and its implications on for the Indian-Asian collision in western Myanmar. Gondwana Res. 26, 89–111 (2014).
Mukherjee, A., Fryar, A. E. & Thomas, W. A. Geologic, geomorphic and hydrologic framework and evolution of the Bengal basin, India and Bangladesh. J. Asian Earth Sci. 34, 227–244 (2009).
Uddin, A., Hames, W. E. & Zahid, K. M. Laser 40Ar/39Ar age constraints on Miocene sequences from the Bengal basin: Implications for middle Miocene denudation of the eastern Himalayas. J. Geophys. Res.: Solid Earth 115, (2010).
Dumas, S. & Arnott, R. Origin of hummocky and swaley cross-stratification: The controlling influence of unidirectional current strength and aggradation rate. Geology 34, 1073–1076 (2006).
Cheel, R. J., Leckie, D. A. & Wright, V. Hummocky cross-stratification. Sedimentol. Rev. 1, 103–122 (1993).
Duke, W. L. Hummocky cross-stratification, tropical hurricanes, and intense winter storms. Sedimentology 32, 167–194 (1985).
Duke, W. L., Arnott, R. & Cheel, R. J. Shelf sandstones and hummocky cross-stratification: New insights on a stormy debate. Geology 19, 625–628 (1991).
Maahs, R., Küchle, J., Scherer, C. M. dos S. & Alvarenga, R. dos S. Sequence stratigraphy of fluvial to shallow-marine deposits: The case of the early Permian Rio Bonito Formation, Paraná Basin, southernmost Brazil. Braz. J. Geol. 49, e20190059 (2019).
Khanam, F., Rahman, M., Alam, M. M. & Abdullah, R. Facies characterization of the Surma Group (Miocene) sediments from Jalalabad gas field, Sylhet trough, Bangladesh: Study from cores and wireline log. J. Geol. Soc. India 89, 155–164 (2017).
Daidu, F., Yuan, W. & Min, L. Classifications, sedimentary features and facies associations of tidal flats. J. Palaeogeography 2, 66–80 (2013).
Huvenne, V. A. I., Masson, D. G. & Wheeler, A. J. Sediment dynamics of a sandy contourite: the sedimentary context of the Darwin cold-water coral mounds, Northern Rockall Trough. Int J Earth Sci (Geol Rundsch) 98, 865–884 (2009).
van BEEK, J. L. & Koster, E. A. Fluvial and estuarine sediments exposed along the Oude Maas (the Netherlands). Sedimentology 19, 237–256 (1972).
Xing, F., Wang, Y. P. & Wang, H. V. Tidal hydrodynamics and fine-grained sediment transport on the radial sand ridge system in the southern Yellow Sea. Mar. Geol. 291–294, 192–210 (2012).
Vaucher, R. et al. Storm-flood-dominated delta succession in the Pleistocene Taiwan Strait. Depositional Record n/a.
Colombera, L., Mountney, N. P., Hodgson, D. M. & McCaffrey, W. D. The Shallow-marine architecture knowledge store: A database for the characterization of shallow-marine and paralic depositional systems. Mar. Petrol. Geol. 75, 83–99 (2016).
Allen, J. R. L. Earthquake magnitude-frequency, epicentral distance, and soft-sediment deformation in sedimentary basins. Sediment. Geol. 46, 67–75 (1986).
Hempton, M. R. & Dewey, J. F. Earthquake-induced deformational structures in young lacustrine sediments, East Anatolian Fault, southeast Turkey. Tectonophysics 98, T7–T14 (1983).
Mohindra, R. & Thakur, V. C. Historic large earthquake-induced soft sediment deformation features in the Sub-Himalayan Doon valley. Geol. Mag. 135, 269–281 (1998).
Mills, P. C. Genesis and diagnostic value of soft-sediment deformation structures: A review. Sediment. Geol. 35, 83–104 (1983).
Molina, Alfaro, Moretti, & Soria. Soft-sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain). Terra Nova 10, 145–150 (1998).
Owen, G. & Moretti, M. Determining the origin of soft-sediment deformation structures: A case study from Upper Carboniferous delta deposits in south-west Wales, UK. Terra Nova 20, 237–245 (2008).
Owen, G. & Moretti, M. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sediment. Geol. 235, 141–147 (2011).