Optimal placement criteria of actuators for hybrid mounting system on a non-aligned plate structure.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
18 Oct 2023
18 Oct 2023
Historique:
received:
08
03
2023
accepted:
14
10
2023
medline:
19
10
2023
pubmed:
19
10
2023
entrez:
18
10
2023
Statut:
epublish
Résumé
Electric motors in electric and hybrid vehicles generate mid-frequency noise and vibration. These factors cause drivers to experience discomfort while traveling. Active mounting techniques have been extensively researched and developed to effectively address this issue. The optimal placement of an active mounting system is essential for enhancing NVH performance when an active mounting system is utilized. In order to propose optimal location criteria for active paths, this paper concentrates on developing an analytical model based on both dynamic and static analysis. The secondary forces along active trajectories are mathematically determined when a structure is subjected to an excitation force. These locations are considered optimal for the active mounting system if the secondary forces are comparatively minimal. Simulations and feasibility experiments are also conducted in order to validate the proposed method. In addition, the results are compared with the case of beam structure. It has been determined through this procedure that the active path's control performance will be enhanced if it is positioned in the optimal location and less control force is required than in the case of beam.
Identifiants
pubmed: 37853047
doi: 10.1038/s41598-023-44980-0
pii: 10.1038/s41598-023-44980-0
pmc: PMC10585008
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
17732Subventions
Organisme : Yeungnam University
ID : 220A061013
Organisme : National Research Foundation of Korea
ID : NRF-2021R1A6A1A03039493
Informations de copyright
© 2023. Springer Nature Limited.
Références
Lydia, E. L. et al. Enhanced archimedes optimization algorithm for clustered wireless sensor networks. Computers, Materials & Continua. 73(1), 477–492. https://doi.org/10.32604/cmc.2022.025939 (2022).
Khan, Z.A., Abbasi, U. & Kim, S.W. An Efficient Algorithm for Mapping Deep Learning Applications on the NoC Architecture. Appl. Sci. 12, 3163. https://doi.org/10.3390/app12063163 (2022).
Dutta, A. K. et al. Optimal deep learning enabled statistical analysis model for traffic prediction. Computers, Materials & Continua. 72(3), 5563–5576. https://doi.org/10.32604/cmc.2022.027707 (2022).
Nain, Z. et al. Optimizing service stipulation uncertainty with deep reinforcement learning for internet vehicle systems. Computers, Materials & Continua. 74(3), 5705–5721. https://doi.org/10.32604/cmc.2023.033194 (2023).
Law, M. et al. Active vibration isolation of machine tools using an electro-hydraulic actuator. CIRP J. Manuf. Sci. Technol. 10, 36–48. https://doi.org/10.1016/j.cirpj.2015.05.005 (2015).
doi: 10.1016/j.cirpj.2015.05.005
Alireza, E., Mahdi, H. & Mehdi, B. Optimal vibration control of rotors with an open edge crack using an electromagnetic actuator. J. Vib. Control 24(1), 37–59. https://doi.org/10.1177/1077546316631880 (2016).
doi: 10.1177/1077546316631880
Sohn, J. W., Paeng, Y. S. & Choi, S. B. An active mount using an electromagnetic actuator for vibration control: Experimental investigation. J. Mech. Eng. Sci. 224, 1617–1625. https://doi.org/10.1243/09544062JMES1902 (2010).
doi: 10.1243/09544062JMES1902
Han, C. H., Choi, S. B., Lee, Y. S., Kim, H. T. & Kim, C. H. A new hybrid mount actuator consisting of air spring and magneto-rheological damper for vibration control of a heavy precision stage. Sens. Act. A Phys. 284, 42–51. https://doi.org/10.1016/j.sna.2018.10.020 (2018).
doi: 10.1016/j.sna.2018.10.020
Qiu, Z. C., Han, J. D., Zhang, X. M., Wang, Y. C. & Wu, Z. W. Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator. J. Sound Vib. 326(3–5), 438–455. https://doi.org/10.1016/j.jsv.2009.05.034 (2009).
doi: 10.1016/j.jsv.2009.05.034
Rodriguez, J., Collet, M. & Chesné, S. Experimental modal identification of smart composite structure applied to active vibration control. Smart Mater. Struct. 30(11), 115008. https://doi.org/10.1088/1361-665X/ac26a6 (2021).
doi: 10.1088/1361-665X/ac26a6
Wang, C. X., Xie, X. L., Chen, Y. H. & Zhang, Z. Y. Investigation on active vibration isolation of a Stewart platform with piezoelectric actuators. J. Sound Vib. 383(24), 1–19. https://doi.org/10.1016/j.jsv.2016.07.021 (2016).
doi: 10.1016/j.jsv.2016.07.021
Hosseini, A. M., Arzanpour, S., Golnaraghi, F. & Parameswaran, A. M. Solenoid actuator design and modeling with application in engine vibration isolators. J. Vib. Control 19(7), 1010–1023. https://doi.org/10.1177/1077546311435517 (2012).
doi: 10.1177/1077546311435517
Williams, D., Khodaparast, H., Jiffri, S. & Yang, C. Active vibration control using piezoelectric actuators employing practical components. J. Vib. Control 25(21–22), 2784–2798. https://doi.org/10.1177/1077546319870933 (2019).
doi: 10.1177/1077546319870933
Lee, Y. W. & Lee, C. W. Dynamic analysis and control of an active engine mount system. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 216(11), 921–931. https://doi.org/10.1243/095440702321031469 (2002).
doi: 10.1243/095440702321031469
Nguyen, V., Choi, S. B., Han, Y. & Moon, S. The design of a piezostack-based active mount and application to a vibration control system. Smart Mater. Struct. 17(6), 065029. https://doi.org/10.1088/0964-1726/17/6/065029 (2008).
doi: 10.1088/0964-1726/17/6/065029
Guo, H., Sun, G. C. & Fan, M. application of active mount engine vibration isolation to fuzzy control systems. Appl. Mech. Mater. 341, 1023–1027 (2013).
doi: 10.4028/www.scientific.net/AMM.341-342.1023
Hong, D. W. & Kim, B. G. Vibration reduction against modulated excitation using multichannel NLMS algorithm for a structure with three active paths between plates. J. Mech. Sci. Technol. 33, 4673–4680. https://doi.org/10.1007/s12206-019-0910-0 (2019).
doi: 10.1007/s12206-019-0910-0
Hong, D. W. & Kim, B. G. Quantification of active structural path for vibration reduction control of plate structure under sinusoidal excitation. Appl. Sci. 9(4), 711. https://doi.org/10.3390/app9040711 (2019).
doi: 10.3390/app9040711
Nguyen, V. Q., Choi, S. M., Han, Y. M., Choi, S. B. & Moon, S. J. The design of a piezostack-based active mount and application to a vibration control system. Smart Mater. Struct. 17(6), 065029. https://doi.org/10.1088/0964-1726/17/6/065029 (2008).
doi: 10.1088/0964-1726/17/6/065029
Choi, S. B., Sohn, J. W., Han, Y. M. & Kim, J. W. Dynamic characteristics of three-axis active mount featuring piezoelectric actuators. J. Intel. Mater. Syst. Struct. 19(9), 1053–1066. https://doi.org/10.1177/1045389X07083142 (2008).
doi: 10.1177/1045389X07083142
Liette, J., Dreyer, J. T. & Singh, R. Interaction between two active structural paths for source mass motion control over mid-frequency range. J. Sound Vib. 333(9), 2369–2385. https://doi.org/10.1016/j.jsv.2013.12.002 (2014).
doi: 10.1016/j.jsv.2013.12.002
Bendine, K. & Alper, P. Optimal position of piezoelectric actuators for active vibration reduction of beams. Appl. Math. Nonlinear Sci. 5, 385–392. https://doi.org/10.2478/amns.2020.1.00036 (2020).
doi: 10.2478/amns.2020.1.00036
Hamzehpour, R. & Jafari Fesharaki, J. Optimization of placement voltage of piezoelectric actuators on an L-shape beam using particle swarm optimization algorithm. Int. J. Optim. Civ. Eng.. 9, 93–105 (2019).
Ishibashi, R., Seki, K., & Iwasaki, M. Development of optimal design support system of actuator position and control system considering resonant vibration suppression in cantilever. Proc. 2021 IEEE international conference on mechatronics (ICM). https://doi.org/10.1109/ICM46511.2021.9385632 (2021).
Tran, H. Q., Vu, V. T. & Tran, M. T. optimal placement and active vibration control of composite plates integrated piezoelectric sensor/actuator pairs. Vietnam Acad. Sci. Technol. 56(1), 113–126 (2018).
doi: 10.15625/2525-2518/56/1/8824
Han, Z., Hui, L., Pu, G. & Chang, L. X. Optimization design and performance analysis of vehicle powertrain mounting system. Chin. J. Mech. Eng. 31, 1–13. https://doi.org/10.1186/s10033-018-0237-2 (2018).
doi: 10.1186/s10033-018-0237-2
Jun, H. & Zhan, K. Topological design of piezoelectric actuator layer for linear quadratic regulator control of thin-shell structures under transient excitation. Smart Mater. Struct. 28(9), 095029. https://doi.org/10.1088/1361-665X/ab1e96 (2019).
doi: 10.1088/1361-665X/ab1e96
Vivek, G., Manu, S. & Nagesh, T. Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure. J. Intell. Mater. Syst. Struct. 21(12), 1227–1243. https://doi.org/10.1177/1045389X10381659 (2010).
doi: 10.1177/1045389X10381659
Liu, X., Cai, G., Peng, F. & Zhang, H. Piezoelectric actuator placement optimization and active vibration control of a membrane structure. Acta Mech. Solida Sin. 31, 66–79. https://doi.org/10.1007/s10338-018-0005-y (2018).
doi: 10.1007/s10338-018-0005-y
Prakash, B., Yasin, M. Y., Khan, A. H., Asjad, M. & Khan, Z. A. Optimal location and geometry of sensors and actuators for active vibration control of smart composite beams. Aust. J. Mech. Eng. 4, 981–999. https://doi.org/10.1080/14484846.2020.1767834 (2020).
doi: 10.1080/14484846.2020.1767834
Stanislaw, W., Marek, P. & Jordan, C. Acoustic radiation-based optimization of the placement of actuators for active control of noise transmitted through plates. Mech. Syst. Signal Process. 147, 107009. https://doi.org/10.1016/j.ymssp.2020.107009 (2021).
doi: 10.1016/j.ymssp.2020.107009
Ziv, B. & Matthew, C. Controllability and actuator placement optimization for active damping of a thin rotating ring with piezo-patch transducers. J. Sound Vibr. 472, 115172. https://doi.org/10.1016/j.jsv.2020.115172 (2020).
doi: 10.1016/j.jsv.2020.115172
Qiu, Y., Hong, D. W. & Kim, B. G. Optimal placement criteria of hybrid mounting system for chassis in future mobility based on beam-type continuous smart structures. Sci. Rep. 13(1), 2317. https://doi.org/10.1038/s41598-023-29379-1 (2023).
doi: 10.1038/s41598-023-29379-1
pubmed: 36759647
pmcid: 9911702