TRPM channels in health and disease.


Journal

Nature reviews. Nephrology
ISSN: 1759-507X
Titre abrégé: Nat Rev Nephrol
Pays: England
ID NLM: 101500081

Informations de publication

Date de publication:
18 Oct 2023
Historique:
accepted: 25 09 2023
medline: 19 10 2023
pubmed: 19 10 2023
entrez: 18 10 2023
Statut: aheadofprint

Résumé

Different cell channels and transporters tightly regulate cytoplasmic levels and the intraorganelle distribution of cations. Perturbations in these processes lead to human diseases that are frequently associated with kidney impairment. The family of melastatin-related transient receptor potential (TRPM) channels, which has eight members in mammals (TRPM1-TRPM8), includes ion channels that are highly permeable to divalent cations, such as Ca

Identifiants

pubmed: 37853091
doi: 10.1038/s41581-023-00777-y
pii: 10.1038/s41581-023-00777-y
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. Springer Nature Limited.

Références

Cosens, D. J. & Manning, A. Abnormal electroretinogram from a Drosophila mutant. Nature 224, 285–287 (1969).
pubmed: 5344615 doi: 10.1038/224285a0
Montell, C. & Rubin, G. M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2, 1313–1323 (1989).
pubmed: 2516726 doi: 10.1016/0896-6273(89)90069-X
Wong, F. et al. Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult. Neuron 3, 81–94 (1989).
pubmed: 2482778 doi: 10.1016/0896-6273(89)90117-7
Minke, B., Wu, C. & Pak, W. L. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258, 84–87 (1975).
pubmed: 810728 doi: 10.1038/258084a0
Montell, C. The TRP superfamily of cation channels. Sci. STKE 2005, re3 (2005).
pubmed: 15728426 doi: 10.1126/stke.2722005re3
Clapham, D. E., Montell, C., Schultz, G. & Julius, D. International Union of Pharmacology International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol. Rev. 55, 591–596 (2003).
pubmed: 14657417 doi: 10.1124/pr.55.4.6
Venkatachalam, K. & Montell, C. TRP channels. Annu. Rev. Biochem. 76, 387–417 (2007).
pubmed: 17579562 pmcid: 4196875 doi: 10.1146/annurev.biochem.75.103004.142819
Ledford, H. & Callaway, E. Medicine Nobel goes to scientists who discovered biology of senses. Nature 598, 246 (2021).
pubmed: 34608291 doi: 10.1038/d41586-021-01283-6
Koivisto, A. P., Belvisi, M. G., Gaudet, R. & Szallasi, A. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat. Rev. Drug. Discov. 21, 41–59 (2022).
pubmed: 34526696 doi: 10.1038/s41573-021-00268-4
Vanneste, M., Segal, A., Voets, T. & Everaerts, W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat. Rev. Urol. 18, 139–159 (2021).
pubmed: 33536636 doi: 10.1038/s41585-021-00428-6
Hof, T. et al. Transient receptor potential channels in cardiac health and disease. Nat. Rev. Cardiol. 16, 344–360 (2019).
pubmed: 30664669 doi: 10.1038/s41569-018-0145-2
Woudenberg-Vrenken, T. E., Bindels, R. J. & Hoenderop, J. G. The role of transient receptor potential channels in kidney disease. Nat. Rev. Nephrol. 5, 441–449 (2009).
pubmed: 19546862 doi: 10.1038/nrneph.2009.100
Patel, A. & Honore, E. Polycystins and renovascular mechanosensory transduction. Nat. Rev. Nephrol. 6, 530–538 (2010).
pubmed: 20625375 doi: 10.1038/nrneph.2010.97
Duncan, L. M. et al. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res. 58, 1515–1520 (1998).
pubmed: 9537257
Xu, X. Z., Moebius, F., Gill, D. L. & Montell, C. Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc. Natl Acad. Sci. USA 98, 10692–10697 (2001).
pubmed: 11535825 pmcid: 58528 doi: 10.1073/pnas.191360198
Wehage, E. et al. Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J. Biol. Chem. 277, 23150–23156 (2002).
pubmed: 11960981 doi: 10.1074/jbc.M112096200
Oberwinkler, J., Lis, A., Giehl, K. M., Flockerzi, V. & Philipp, S. E. Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J. Biol. Chem. 280, 22540–22548 (2005).
pubmed: 15824111 doi: 10.1074/jbc.M503092200
Hofmann, T., Chubanov, V., Gudermann, T. & Montell, C. TRPM5 is a voltage-modulated and Ca
pubmed: 12842017 doi: 10.1016/S0960-9822(03)00431-7
Launay, P. et al. TRPM4 is a Ca
pubmed: 12015988 doi: 10.1016/S0092-8674(02)00719-5
Chubanov, V. et al. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc. Natl Acad. Sci. USA 101, 2894–2899 (2004).
pubmed: 14976260 pmcid: 365716 doi: 10.1073/pnas.0305252101
Runnels, L. W., Yue, L. & Clapham, D. E. The TRPM7 channel is inactivated by PIP
pubmed: 11941371 doi: 10.1038/ncb781
Lambert, S. et al. Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J. Biol. Chem. 286, 12221–12233 (2011).
pubmed: 21278253 pmcid: 3069426 doi: 10.1074/jbc.M110.202945
Zhang, Z., Toth, B., Szollosi, A., Chen, J. & Csanady, L. Structure of a TRPM2 channel in complex with Ca
pubmed: 29745897 pmcid: 5976436 doi: 10.7554/eLife.36409
Yin, Y. et al. Visualizing structural transitions of ligand-dependent gating of the TRPM2 channel. Nat. Commun. 10, 3740 (2019).
pubmed: 31431622 pmcid: 6702222 doi: 10.1038/s41467-019-11733-5
Huang, Y., Winkler, P. A., Sun, W., Lu, W. & Du, J. Architecture of the TRPM2 channel and its activation mechanism by ADP-ribose and calcium. Nature 562, 145–149 (2018).
pubmed: 30250252 doi: 10.1038/s41586-018-0558-4
Huang, Y., Roth, B., Lu, W. & Du, J. Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel. Elife 8, e50175 (2019).
pubmed: 31513012 pmcid: 6759353 doi: 10.7554/eLife.50175
Wang, L. et al. Structures and gating mechanism of human TRPM2. Science 362, eaav4809 (2018).
pubmed: 30467180 pmcid: 6459600 doi: 10.1126/science.aav4809
Yu, X. et al. Structural and functional basis of the selectivity filter as a gate in human TRPM2 channel. Cell Rep. 37, 110025 (2021).
pubmed: 34788616 doi: 10.1016/j.celrep.2021.110025
Zhao, C. & MacKinnon, R. Structural and functional analyses of a GPCR-inhibited ion channel TRPM3. Neuron 111, 81–91.e7 (2023).
pubmed: 36283409 doi: 10.1016/j.neuron.2022.10.002
Guo, J. et al. Structures of the calcium-activated, non-selective cation channel TRPM4. Nature 552, 205–209 (2017).
pubmed: 29211714 pmcid: 5901961 doi: 10.1038/nature24997
Autzen, H. E. et al. Structure of the human TRPM4 ion channel in a lipid nanodisc. Science 359, 228–232 (2018).
pubmed: 29217581 doi: 10.1126/science.aar4510
Winkler, P. A., Huang, Y., Sun, W., Du, J. & Lu, W. Electron cryo-microscopy structure of a human TRPM4 channel. Nature 552, 200–204 (2017).
pubmed: 29211723 doi: 10.1038/nature24674
Duan, J. et al. Structure of full-length human TRPM4. Proc. Natl Acad. Sci. USA 115, 2377–2382 (2018).
pubmed: 29463718 pmcid: 5877947 doi: 10.1073/pnas.1722038115
Ruan, Z. et al. Structures of the TRPM5 channel elucidate mechanisms of activation and inhibition. Nat. Struct. Mol. Biol. 28, 604–613 (2021).
pubmed: 34168372 pmcid: 8767786 doi: 10.1038/s41594-021-00607-4
Duan, J. et al. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc. Natl Acad. Sci. USA 115, E8201–E8210 (2018).
pubmed: 30108148 pmcid: 6126765 doi: 10.1073/pnas.1810719115
Nadezhdin, K. D. et al. Structural mechanisms of TRPM7 activation and inhibition. Nat. Commun. 14, 2639 (2023).
pubmed: 37156763 pmcid: 10167348 doi: 10.1038/s41467-023-38362-3
Yin, Y. et al. Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359, 237–241 (2018).
pubmed: 29217583 doi: 10.1126/science.aan4325
Yin, Y. et al. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science 363, eaav9334 (2019).
pubmed: 30733385 pmcid: 6478609 doi: 10.1126/science.aav9334
Diver, M. M., Cheng, Y. & Julius, D. Structural insights into TRPM8 inhibition and desensitization. Science 365, 1434–1440 (2019).
pubmed: 31488702 pmcid: 7262954 doi: 10.1126/science.aax6672
Zhao, C. et al. Structures of a mammalian TRPM8 in closed state. Nat. Commun. 13, 3113 (2022).
pubmed: 35662242 pmcid: 9166780 doi: 10.1038/s41467-022-30919-y
Yin, Y. et al. Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP
pubmed: 36227998 pmcid: 9795508 doi: 10.1126/science.add1268
Oancea, E. et al. TRPM1 forms ion channels associated with melanin content in melanocytes. Sci. Signal. 2, ra21 (2009).
pubmed: 19436059 pmcid: 4086358 doi: 10.1126/scisignal.2000146
Morgans, C. W. et al. TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc. Natl Acad. Sci. USA 106, 19174–19178 (2009).
pubmed: 19861548 pmcid: 2776419 doi: 10.1073/pnas.0908711106
Shen, Y. et al. A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. J. Neurosci. 29, 6088–6093 (2009).
pubmed: 19439586 pmcid: 2752970 doi: 10.1523/JNEUROSCI.0132-09.2009
Schneider, F. M., Mohr, F., Behrendt, M. & Oberwinkler, J. Properties and functions of TRPM1 channels in the dendritic tips of retinal ON-bipolar cells. Eur. J. Cell Biol. 94, 420–427 (2015).
pubmed: 26111660 doi: 10.1016/j.ejcb.2015.06.005
Shen, Y., Rampino, M. A., Carroll, R. C. & Nawy, S. G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer. Proc. Natl Acad. Sci. USA 109, 8752–8757 (2012).
pubmed: 22586107 pmcid: 3365217 doi: 10.1073/pnas.1117433109
Xu, Y. et al. The TRPM1 channel in ON-bipolar cells is gated by both the α and the βγ subunits of the G-protein Go. Sci. Rep. 6, 20940 (2016).
pubmed: 26883481 pmcid: 4756708 doi: 10.1038/srep20940
Iosifidis, C. et al. Clinical and genetic findings in TRPM1-related congenital stationary night blindness. Acta Ophthalmol. 100, e1332–e1339 (2022).
pubmed: 35633130 doi: 10.1111/aos.15186
van Genderen, M. M. et al. Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am. J. Hum. Genet. 85, 730–736 (2009).
pubmed: 19896109 pmcid: 2775826 doi: 10.1016/j.ajhg.2009.10.012
Audo, I. et al. TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am. J. Hum. Genet. 85, 720–729 (2009).
pubmed: 19896113 pmcid: 2775830 doi: 10.1016/j.ajhg.2009.10.013
Li, Z. et al. Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am. J. Hum. Genet. 85, 711–719 (2009).
pubmed: 19878917 pmcid: 2775833 doi: 10.1016/j.ajhg.2009.10.003
Wagner, T. F. et al. TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch. 460, 755–765 (2010).
pubmed: 20401728 doi: 10.1007/s00424-010-0838-9
Held, K. et al. Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel. J. Physiol. 596, 2413–2432 (2018).
pubmed: 29604058 pmcid: 6002228 doi: 10.1113/JP274124
Persoons, E., Kerselaers, S., Voets, T., Vriens, J. & Held, K. Partial agonistic actions of sex hormone steroids on TRPM3 function. Int. J. Mol. Sci. 22, 13652 (2021).
pubmed: 34948452 pmcid: 8708174 doi: 10.3390/ijms222413652
Wagner, T. F. et al. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells. Nat. Cell Biol. 10, 1421–1430 (2008).
pubmed: 18978782 doi: 10.1038/ncb1801
Toth, B. I. et al. Regulation of the transient receptor potential channel TRPM3 by phosphoinositides. J. Gen. Physiol. 146, 51–63 (2015).
pubmed: 26123194 pmcid: 4485019 doi: 10.1085/jgp.201411339
Zhao, S., Carnevale, V., Gabrielle, M., Gianti, E. & Rohacs, T. Computational and functional studies of the PI(4,5)P
pubmed: 36181791 pmcid: 9647539 doi: 10.1016/j.jbc.2022.102547
Behrendt, M. et al. The structural basis for an on-off switch controlling Gβγ-mediated inhibition of TRPM3 channels. Proc. Natl Acad. Sci. USA 117, 29090–29100 (2020).
pubmed: 33122432 pmcid: 7682392 doi: 10.1073/pnas.2001177117
Dembla, S. et al. Anti-nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels. Elife 6, e26280 (2017).
pubmed: 28826482 pmcid: 5593507 doi: 10.7554/eLife.26280
Vriens, J. et al. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70, 482–494 (2011).
pubmed: 21555074 doi: 10.1016/j.neuron.2011.02.051
Mulier, M. et al. Upregulation of TRPM3 in nociceptors innervating inflamed tissue. Elife 9, e61103 (2020).
pubmed: 32880575 pmcid: 7470828 doi: 10.7554/eLife.61103
Vanneste, M. et al. TRPM3 is expressed in afferent bladder neurons and is upregulated during bladder inflammation. Int. J. Mol. Sci. 23, 107 (2021).
pubmed: 35008533 pmcid: 8745475 doi: 10.3390/ijms23010107
Zhao, M. et al. Upregulation of transient receptor potential cation channel subfamily M member-3 in bladder afferents is involved in chronic pain in cyclophosphamide-induced cystitis. Pain 163, 2200–2212 (2022).
pubmed: 35413036 doi: 10.1097/j.pain.0000000000002616
Dyment, D. A. et al. De novo substitutions of TRPM3 cause intellectual disability and epilepsy. Eur. J. Hum. Genet. 27, 1611–1618 (2019).
pubmed: 31278393 pmcid: 6777445 doi: 10.1038/s41431-019-0462-x
Van Hoeymissen, E. et al. Gain of channel function and modified gating properties in TRPM3 mutants causing intellectual disability and epilepsy. Elife 9, e57190 (2020).
pubmed: 32427099 pmcid: 7253177 doi: 10.7554/eLife.57190
Burglen, L. et al. Gain-of-function variants in the ion channel gene TRPM3 underlie a spectrum of neurodevelopmental disorders. Elife 12, e81032 (2023).
pubmed: 36648066 pmcid: 9886277 doi: 10.7554/eLife.81032
Lines, M. A. et al. Phenotypic spectrum of the recurrent TRPM3 p.(Val837Met) substitution in seven individuals with global developmental delay and hypotonia. Am. J. Med. Genet. A 188, 1667–1675 (2022).
pubmed: 35146895 doi: 10.1002/ajmg.a.62673
Grimm, C., Kraft, R., Sauerbruch, S., Schultz, G. & Harteneck, C. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J. Biol. Chem. 278, 21493–21501 (2003).
pubmed: 12672799 doi: 10.1074/jbc.M300945200
Siroky, B. J. et al. Primary cilia regulate the osmotic stress response of renal epithelial cells through TRPM3. Am. J. Physiol. Ren. Physiol. 312, F791–F805 (2017).
doi: 10.1152/ajprenal.00465.2015
Kleene, S. J. et al. The TRPP2-dependent channel of renal primary cilia also requires TRPM3. PLoS ONE 14, e0214053 (2019).
pubmed: 30883612 pmcid: 6422334 doi: 10.1371/journal.pone.0214053
Yamaguchi, H., Matsushita, M., Nairn, A. C. & Kuriyan, J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol. Cell 7, 1047–1057 (2001).
pubmed: 11389851 doi: 10.1016/S1097-2765(01)00256-8
Ryazanov, A. G. et al. Identification of a new class of protein kinases represented by eukaryotic elongation factor-2 kinase. Proc. Natl Acad. Sci. USA 94, 4884–4889 (1997).
pubmed: 9144159 pmcid: 24600 doi: 10.1073/pnas.94.10.4884
Montell, C. et al. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell 9, 229–231 (2002).
pubmed: 11864597 doi: 10.1016/S1097-2765(02)00448-3
Kerschbaum, H. H. & Cahalan, M. D. Single-channel recording of a store-operated Ca
pubmed: 9933165 doi: 10.1126/science.283.5403.836
Prakriya, M. & Lewis, R. S. Separation and characterization of currents through store-operated CRAC channels and Mg
pubmed: 11981025 pmcid: 2233817 doi: 10.1085/jgp.20028551
Kozak, J. A., Kerschbaum, H. H. & Cahalan, M. D. Distinct properties of CRAC and MIC channels in RBL cells. J. Gen. Physiol. 120, 221–235 (2002).
pubmed: 12149283 pmcid: 2234455 doi: 10.1085/jgp.20028601
Nadler, M. J. et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411, 590–595 (2001).
pubmed: 11385574 doi: 10.1038/35079092
Schmitz, C. et al. Regulation of vertebrate cellular Mg
pubmed: 12887921 doi: 10.1016/S0092-8674(03)00556-7
Clapham, D. E., Runnels, L. W. & Strubing, C. The TRP ion channel family. Nat. Rev. Neurosci. 2, 387–396 (2001).
pubmed: 11389472 doi: 10.1038/35077544
Fleig, A. & Chubanov, V. TRPM7. Handb. Exp. Pharmacol. 222, 521–546 (2014).
pubmed: 24756720 pmcid: 5663634 doi: 10.1007/978-3-642-54215-2_21
Mittermeier, L. et al. TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. Proc. Natl Acad. Sci. USA 116, 4706–4715 (2019).
pubmed: 30770447 pmcid: 6410795 doi: 10.1073/pnas.1810633116
Abiria, S. A. et al. TRPM7 senses oxidative stress to release Zn
pubmed: 28696294 pmcid: 5544332 doi: 10.1073/pnas.1707380114
Monteilh-Zoller, M. K. et al. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J. Gen. Physiol. 121, 49–60 (2003).
pubmed: 12508053 pmcid: 2217320 doi: 10.1085/jgp.20028740
Faouzi, M., Kilch, T., Horgen, F. D., Fleig, A. & Penner, R. The TRPM7 channel kinase regulates store-operated calcium entry. J. Physiol. 595, 3165–3180 (2017).
pubmed: 28130783 pmcid: 5430208 doi: 10.1113/JP274006
Demeuse, P., Penner, R. & Fleig, A. TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J. Gen. Physiol. 127, 421–434 (2006).
pubmed: 16533898 pmcid: 2151514 doi: 10.1085/jgp.200509410
Schmidt, E. et al. Structural mechanism of TRPM7 channel regulation by intracellular magnesium. Cell Mol. Life Sci. 79, 225 (2022).
pubmed: 35389104 pmcid: 8989868 doi: 10.1007/s00018-022-04192-7
Kozak, J. A., Matsushita, M., Nairn, A. C. & Cahalan, M. D. Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. J. Gen. Physiol. 126, 499–514 (2005).
pubmed: 16260839 pmcid: 2266608 doi: 10.1085/jgp.200509324
Xie, J. et al. Phosphatidylinositol 4,5-bisphosphate (PIP
pubmed: 22180838 pmcid: 3238349 doi: 10.1038/srep00146
Clark, K. et al. Massive autophosphorylation of the Ser/Thr-rich domain controls protein kinase activity of TRPM6 and TRPM7. PLoS ONE 3, e1876 (2008).
pubmed: 18365021 pmcid: 2267223 doi: 10.1371/journal.pone.0001876
Matsushita, M. et al. Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J. Biol. Chem. 280, 20793–20803 (2005).
pubmed: 15781465 doi: 10.1074/jbc.M413671200
Kollewe, A. et al. The molecular appearance of native TRPM7 channel complexes identified by high-resolution proteomics. Elife 10, e68544 (2021).
pubmed: 34766907 pmcid: 8616561 doi: 10.7554/eLife.68544
Brandao, K., Deason-Towne, F., Zhao, X., Perraud, A. L. & Schmitz, C. TRPM6 kinase activity regulates TRPM7 trafficking and inhibits cellular growth under hypomagnesic conditions. Cell Mol. Life Sci. 71, 4853–4867 (2014).
pubmed: 24858416 pmcid: 4234683 doi: 10.1007/s00018-014-1647-7
Dorovkov, M. V. & Ryazanov, A. G. Phosphorylation of annexin I by TRPM7 channel-kinase. J. Biol. Chem. 279, 50643–50646 (2004).
pubmed: 15485879 doi: 10.1074/jbc.C400441200
Clark, K. et al. TRPM7 regulates myosin IIA filament stability and protein localization by heavy chain phosphorylation. J. Mol. Biol. 378, 790–803 (2008).
pubmed: 18394644 pmcid: 4541798 doi: 10.1016/j.jmb.2008.02.057
Perraud, A. L., Zhao, X., Ryazanov, A. G. & Schmitz, C. The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k. Cell Signal. 23, 586–593 (2011).
pubmed: 21112387 doi: 10.1016/j.cellsig.2010.11.011
Dorovkov, M. V., Beznosov, S. N., Shah, S., Kotlianskaia, L. & Kostiukova, A. S. Effect of mutations imitating the phosphorylation by TRPM7 kinase on the function of the N-terminal domain of tropomodulin [Russian]. Biofizika 53, 943–949 (2008).
pubmed: 19137675
Deason-Towne, F., Perraud, A. L. & Schmitz, C. Identification of Ser/Thr phosphorylation sites in the C2-domain of phospholipase C γ2 (PLCγ2) using TRPM7-kinase. Cell Signal. 24, 2070–2075 (2012).
pubmed: 22759789 pmcid: 4049354 doi: 10.1016/j.cellsig.2012.06.015
Romagnani, A. et al. TRPM7 kinase activity is essential for T cell colonization and alloreactivity in the gut. Nat. Commun. 8, 1917 (2017).
pubmed: 29203869 pmcid: 5714948 doi: 10.1038/s41467-017-01960-z
Voringer, S. et al. Inhibition of TRPM7 blocks MRTF/SRF-dependent transcriptional and tumorigenic activity. Oncogene 39, 2328–2344 (2020).
pubmed: 31844251 doi: 10.1038/s41388-019-1140-8
Ogata, K. et al. The crucial role of the TRPM7 kinase domain in the early stage of amelogenesis. Sci. Rep. 7, 18099 (2017).
pubmed: 29273814 pmcid: 5741708 doi: 10.1038/s41598-017-18291-0
Desai, B. N. et al. Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev. Cell 22, 1149–1162 (2012).
pubmed: 22698280 pmcid: 3397829 doi: 10.1016/j.devcel.2012.04.006
Krapivinsky, G., Krapivinsky, L., Manasian, Y. & Clapham, D. E. The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell 157, 1061–1072 (2014).
pubmed: 24855944 pmcid: 4156102 doi: 10.1016/j.cell.2014.03.046
Bai, Z. et al. CNNM proteins selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. PLoS Biol. 19, e3001496 (2021).
pubmed: 34928937 pmcid: 8726484 doi: 10.1371/journal.pbio.3001496
Runnels, L. W., Yue, L. & Clapham, D. E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043–1047 (2001).
pubmed: 11161216 doi: 10.1126/science.1058519
Schappe, M. S. et al. Efferocytosis requires periphagosomal Ca
pubmed: 35680919 pmcid: 9184625 doi: 10.1038/s41467-022-30959-4
Schappe, M. S. et al. Chanzyme TRPM7 mediates the Ca
pubmed: 29343440 pmcid: 5783319 doi: 10.1016/j.immuni.2017.11.026
Mendu, S. K. et al. Targeting the ion channel TRPM7 promotes the thymic development of regulatory T cells by promoting IL-2 signaling. Sci. Signal. 13, eaab0619 (2020).
doi: 10.1126/scisignal.abb0619
Jin, J. et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg
pubmed: 18974357 pmcid: 2605283 doi: 10.1126/science.1163493
Sah, R. et al. Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. Proc. Natl Acad. Sci. USA 110, E3037–E3046 (2013).
pubmed: 23878236 pmcid: 3740880 doi: 10.1073/pnas.1311865110
Ryazanova, L. V. et al. Elucidating the role of the TRPM7 alpha-kinase: TRPM7 kinase inactivation leads to magnesium deprivation resistance phenotype in mice. Sci. Rep. 4, 7599 (2014).
pubmed: 25534891 pmcid: 4274504 doi: 10.1038/srep07599
Chubanov, V. & Gudermann, T. Mapping TRPM7 function by NS8593. Int. J. Mol. Sci. 21, 7017 (2020).
pubmed: 32977698 pmcid: 7582524 doi: 10.3390/ijms21197017
Bates-Withers, C., Sah, R. & Clapham, D. E. TRPM7, the Mg
pubmed: 21290295 doi: 10.1007/978-94-007-0265-3_9
Ryazanova, L. V. et al. TRPM7 is essential for Mg
pubmed: 21045827 doi: 10.1038/ncomms1108
Schutz, A. et al. Trophectoderm cell failure leads to peri-implantation lethality in Trpm7-deficient mouse embryos. Cell Rep. 37, 109851 (2021).
pubmed: 34686339 doi: 10.1016/j.celrep.2021.109851
Jin, J. et al. The channel kinase, TRPM7, is required for early embryonic development. Proc. Natl Acad. Sci. USA 109, E225–E233 (2012).
pubmed: 22203997 doi: 10.1073/pnas.1120033109
Sah, R. et al. The timing of myocardial Trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction and repolarization. Circulation 128, 101–114 (2013).
pubmed: 23734001 doi: 10.1161/CIRCULATIONAHA.112.000768
Rios, F. J. et al. Chanzyme TRPM7 protects against cardiovascular inflammation and fibrosis. Cardiovasc. Res. 116, 721–735 (2020).
pubmed: 31250885 doi: 10.1093/cvr/cvz164
Zou, Z. G., Rios, F. J., Montezano, A. C. & Touyz, R. M. TRPM7, magnesium, and signaling. Int. J. Mol. Sci. 20, 1877 (2019).
pubmed: 30995736 pmcid: 6515203 doi: 10.3390/ijms20081877
Antunes, T. T. et al. Transient receptor potential melastatin 7 cation channel kinase: new player in angiotensin II-induced hypertension. Hypertension 67, 763–773 (2016).
pubmed: 26928801 doi: 10.1161/HYPERTENSIONAHA.115.07021
Rios, F. J. et al. TRPM7 deficiency exacerbates cardiovascular and renal damage induced by aldosterone-salt. Commun. Biol. 5, 746 (2022).
pubmed: 35882956 pmcid: 9325869 doi: 10.1038/s42003-022-03715-z
Zierler, S. et al. TRPM7 kinase activity regulates murine mast cell degranulation. J. Physiol. 594, 2957–2970 (2016).
pubmed: 26660477 pmcid: 4887679 doi: 10.1113/JP271564
Suzuki, S., Penner, R. & Fleig, A. TRPM7 contributes to progressive nephropathy. Sci. Rep. 10, 2333 (2020).
pubmed: 32047249 pmcid: 7012919 doi: 10.1038/s41598-020-59355-y
Suzuki, S., Fleig, A. & Penner, R. CBGA ameliorates inflammation and fibrosis in nephropathy. Sci. Rep. 13, 6341 (2023).
pubmed: 37072467 pmcid: 10113213 doi: 10.1038/s41598-023-33507-2
Stritt, S. et al. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg
pubmed: 27020697 pmcid: 4820538 doi: 10.1038/ncomms11097
Gualdani, R. et al. A TRPM7 mutation linked to familial trigeminal neuralgia: omega current and hyperexcitability of trigeminal ganglion neurons. Proc. Natl Acad. Sci. USA 119, e2119630119 (2022).
pubmed: 36095216 pmcid: 9499596 doi: 10.1073/pnas.2119630119
Voets, T. et al. TRPM6 forms the Mg
pubmed: 14576148 doi: 10.1074/jbc.M311201200
Zhang, Z. et al. The TRPM6 kinase domain determines the Mg.ATP sensitivity of TRPM7/M6 heteromeric ion channels. J. Biol. Chem. 289, 5217–5227 (2014).
pubmed: 24385424 pmcid: 3931078 doi: 10.1074/jbc.M113.512285
Ferioli, S. et al. TRPM6 and TRPM7 differentially contribute to the relief of heteromeric TRPM6/7 channels from inhibition by cytosolic Mg
pubmed: 28821869 pmcid: 5562840 doi: 10.1038/s41598-017-08144-1
Chubanov, V. et al. Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. Elife 5, e20914 (2016).
pubmed: 27991852 pmcid: 5218537 doi: 10.7554/eLife.20914
Zhang, Z. et al. N-Myc-induced up-regulation of TRPM6/TRPM7 channels promotes neuroblastoma cell proliferation. Oncotarget 5, 7625–7634 (2014).
pubmed: 25277194 pmcid: 4202149 doi: 10.18632/oncotarget.2283
Chubanov, V., Gudermann, T. & Schlingmann, K. P. Essential role for TRPM6 in epithelial magnesium transport and body magnesium homeostasis. Pflugers Arch. 451, 228–234 (2005).
pubmed: 16075242 doi: 10.1007/s00424-005-1470-y
Krapivinsky, G. et al. Histone phosphorylation by TRPM6’s cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proc. Natl Acad. Sci. USA 114, E7092–E7100 (2017).
pubmed: 28784805 pmcid: 5576826 doi: 10.1073/pnas.1708427114
Cao, G. et al. Methionine sulfoxide reductase B1 (MsrB1) recovers TRPM6 channel activity during oxidative stress. J. Biol. Chem. 285, 26081–26087 (2010).
pubmed: 20584906 pmcid: 2924009 doi: 10.1074/jbc.M110.103655
Cao, G. et al. Regulation of the epithelial Mg
pubmed: 19329436 pmcid: 2685660 doi: 10.1074/jbc.M808752200
Cao, G. et al. RACK1 inhibits TRPM6 activity via phosphorylation of the fused α-kinase domain. Curr. Biol. 18, 168–176 (2008).
pubmed: 18258429 doi: 10.1016/j.cub.2007.12.058
Walder, R. Y. et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 31, 171–174 (2002).
pubmed: 12032570 doi: 10.1038/ng901
Schlingmann, K. P. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 31, 166–170 (2002).
pubmed: 12032568 doi: 10.1038/ng889
Friedman, M., Hatcher, G. & Watson, L. Primary hypomagnesaemia with secondary hypocalcaemia in an infant. Lancet 1, 703–705 (1967).
pubmed: 4163945 doi: 10.1016/S0140-6736(67)92181-2
Vargas-Poussou, R. et al. Possible role for rare TRPM7 variants in patients with hypomagnesemia with secondary hypocalcemia. Nephrol. Dial. Transpl. 38, 679–690 (2022).
doi: 10.1093/ndt/gfac182
Konrad, M., Schlingmann, K. P. & Gudermann, T. Insights into the molecular nature of magnesium homeostasis. Am. J. Physiol. Ren. Physiol. 286, F599–F605 (2004).
doi: 10.1152/ajprenal.00312.2003
Walder, R. Y. et al. Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum. Mol. Genet. 18, 4367–4375 (2009).
pubmed: 19692351 pmcid: 2766295 doi: 10.1093/hmg/ddp392
Funato, Y., Yamazaki, D., Okuzaki, D., Yamamoto, N. & Miki, H. Importance of the renal ion channel TRPM6 in the circadian secretion of renin to raise blood pressure. Nat. Commun. 12, 3683 (2021).
pubmed: 34140503 pmcid: 8211686 doi: 10.1038/s41467-021-24063-2
Perraud, A. L. et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 595–599 (2001).
pubmed: 11385575 doi: 10.1038/35079100
Shen, B. W., Perraud, A. L., Scharenberg, A. & Stoddard, B. L. The crystal structure and mutational analysis of human NUDT9. J. Mol. Biol. 332, 385–398 (2003).
pubmed: 12948489 doi: 10.1016/S0022-2836(03)00954-9
Sano, Y. et al. Immunocyte Ca
pubmed: 11509734 doi: 10.1126/science.1062473
Kolisek, M., Beck, A., Fleig, A. & Penner, R. Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol. Cell 18, 61–69 (2005).
pubmed: 15808509 doi: 10.1016/j.molcel.2005.02.033
Hara, Y. et al. LTRPC2 Ca
pubmed: 11804595 doi: 10.1016/S1097-2765(01)00438-5
Perraud, A. L. et al. Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J. Biol. Chem. 280, 6138–6148 (2005).
pubmed: 15561722 doi: 10.1074/jbc.M411446200
Toth, B. & Csanady, L. Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel. J. Biol. Chem. 285, 30091–30102 (2010).
pubmed: 20650899 pmcid: 2943302 doi: 10.1074/jbc.M109.066464
McHugh, D., Flemming, R., Xu, S. Z., Perraud, A. L. & Beech, D. J. Critical intracellular Ca
pubmed: 12529379 doi: 10.1074/jbc.M210810200
Toth, B. & Csanady, L. Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Proc. Natl Acad. Sci. USA 109, 13440–13445 (2012).
pubmed: 22847436 pmcid: 3421201 doi: 10.1073/pnas.1204702109
Song, K. et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353, 1393–1398 (2016).
pubmed: 27562954 pmcid: 7612276 doi: 10.1126/science.aaf7537
Tan, C. H. & McNaughton, P. A. The TRPM2 ion channel is required for sensitivity to warmth. Nature 536, 460–463 (2016).
pubmed: 27533035 pmcid: 5720344 doi: 10.1038/nature19074
Yamamoto, S. et al. TRPM2-mediated Ca
pubmed: 18542050 pmcid: 2789807 doi: 10.1038/nm1758
Di, A. et al. The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat. Immunol. 13, 29–34 (2011).
pubmed: 22101731 pmcid: 3242890 doi: 10.1038/ni.2171
Uchida, K. et al. Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 60, 119–126 (2011).
pubmed: 20921208 doi: 10.2337/db10-0276
Haraguchi, K. et al. TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J. Neurosci. 32, 3931–3941 (2012).
pubmed: 22423113 pmcid: 6703465 doi: 10.1523/JNEUROSCI.4703-11.2012
Wang, G. et al. Oxidant sensing by TRPM2 inhibits neutrophil migration and mitigates inflammation. Dev. Cell 38, 453–462 (2016).
pubmed: 27569419 pmcid: 5455786 doi: 10.1016/j.devcel.2016.07.014
Miller, B. A. et al. The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 304, H1010–H1022 (2013).
pubmed: 23376831 pmcid: 3625898 doi: 10.1152/ajpheart.00906.2012
Alim, I., Teves, L., Li, R., Mori, Y. & Tymianski, M. Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J. Neurosci. 33, 17264–17277 (2013).
pubmed: 24174660 pmcid: 6618359 doi: 10.1523/JNEUROSCI.1729-13.2013
Ostapchenko, V. G. et al. The transient receptor potential melastatin 2 (TRPM2) channel contributes to β-amyloid oligomer-related neurotoxicity and memory impairment. J. Neurosci. 35, 15157–15169 (2015).
pubmed: 26558786 pmcid: 6605355 doi: 10.1523/JNEUROSCI.4081-14.2015
Gao, G. et al. TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1. J. Clin. Invest. 124, 4989–5001 (2014).
pubmed: 25295536 pmcid: 4347231 doi: 10.1172/JCI76042
Eraslan, E., Tanyeli, A., Polat, E. & Polat, E. 8-Br-cADPR, a TRPM2 ion channel antagonist, inhibits renal ischemia-reperfusion injury. J. Cell Physiol. 234, 4572–4581 (2019).
pubmed: 30191993 doi: 10.1002/jcp.27236
Tsavaler, L., Shapero, M. H., Morkowski, S. & Laus, R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61, 3760–3769 (2001).
pubmed: 11325849
McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).
pubmed: 11882888 doi: 10.1038/nature719
Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).
pubmed: 11893340 doi: 10.1016/S0092-8674(02)00652-9
Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–754 (2004).
pubmed: 15306801 doi: 10.1038/nature02732
Rohacs, T., Lopes, C. M., Michailidis, I. & Logothetis, D. E. PI(4,5)P
pubmed: 15852009 doi: 10.1038/nn1451
Mohandass, A. et al. TRPM8 as the rapid testosterone signaling receptor: implications in the regulation of dimorphic sexual and social behaviors. FASEB J. 34, 10887–10906 (2020).
pubmed: 32609392 doi: 10.1096/fj.202000794R
Knowlton, W. M., Bifolck-Fisher, A., Bautista, D. M. & McKemy, D. D. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 150, 340–350 (2010).
pubmed: 20542379 pmcid: 2897947 doi: 10.1016/j.pain.2010.05.021
Bautista, D. M. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448, 204–208 (2007).
pubmed: 17538622 doi: 10.1038/nature05910
Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).
pubmed: 17481391 doi: 10.1016/j.neuron.2007.02.024
Colburn, R. W. et al. Attenuated cold sensitivity in TRPM8 null mice. Neuron 54, 379–386 (2007).
pubmed: 17481392 doi: 10.1016/j.neuron.2007.04.017
Liu, B. et al. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. Pain 154, 2169–2177 (2013).
pubmed: 23820004 pmcid: 3778045 doi: 10.1016/j.pain.2013.06.043
Parra, A. et al. Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nat. Med. 16, 1396–1399 (2010).
pubmed: 21076394 doi: 10.1038/nm.2264
Ramachandran, R. et al. TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc. Natl Acad. Sci. USA 110, 7476–7481 (2013).
pubmed: 23596210 pmcid: 3645521 doi: 10.1073/pnas.1217431110
Uvin, P. et al. Essential role of transient receptor potential M8 (TRPM8) in a model of acute cold-induced urinary urgency. Eur. Urol. 68, 655–661 (2015).
pubmed: 25843641 doi: 10.1016/j.eururo.2015.03.037
Anand, U., Korchev, Y. & Anand, P. The role of urea in neuronal degeneration and sensitization: an in vitro model of uremic neuropathy. Mol. Pain. 15, 1744806919881038 (2019).
pubmed: 31549574 pmcid: 6796209 doi: 10.1177/1744806919881038
Prawitt, D. et al. TRPM5 is a transient Ca
pubmed: 14634208 pmcid: 299937 doi: 10.1073/pnas.2334624100
Liu, D. & Liman, E. R. Intracellular Ca
pubmed: 14657398 pmcid: 299934 doi: 10.1073/pnas.2334159100
Nilius, B. et al. Voltage dependence of the Ca
pubmed: 12799367 doi: 10.1074/jbc.M305127200
Zhang, Z., Okawa, H., Wang, Y. & Liman, E. R. Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J. Biol. Chem. 280, 39185–39192 (2005).
pubmed: 16186107 doi: 10.1074/jbc.M506965200
Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).
pubmed: 16355226 doi: 10.1038/nature04248
Ullrich, N. D. et al. Comparison of functional properties of the Ca
pubmed: 15670874 doi: 10.1016/j.ceca.2004.11.001
Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. F. Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294, 752–754 (1981).
pubmed: 6275271 doi: 10.1038/294752a0
Vennekens, R. et al. Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat. Immunol. 8, 312–320 (2007).
pubmed: 17293867 doi: 10.1038/ni1441
Mathar, I. et al. Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J. Clin. Invest. 120, 3267–3279 (2010).
pubmed: 20679729 pmcid: 2929713 doi: 10.1172/JCI41348
Schattling, B. et al. TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 18, 1805–1811 (2012).
pubmed: 23160238 doi: 10.1038/nm.3015
Launay, P. et al. TRPM4 regulates calcium oscillations after T cell activation. Science 306, 1374–1377 (2004).
pubmed: 15550671 doi: 10.1126/science.1098845
Barbet, G. et al. The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat. Immunol. 9, 1148–1156 (2008).
pubmed: 18758465 pmcid: 2956271 doi: 10.1038/ni.1648
Gerzanich, V. et al. De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat. Med. 15, 185–191 (2009).
pubmed: 19169264 pmcid: 2730968 doi: 10.1038/nm.1899
Kruse, M. et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J. Clin. Invest. 119, 2737–2744 (2009).
pubmed: 19726882 pmcid: 2735920 doi: 10.1172/JCI38292
Stallmeyer, B. et al. Mutational spectrum in the Ca
pubmed: 21887725 doi: 10.1002/humu.21599
Liu, H. et al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS ONE 8, e54131 (2013).
pubmed: 23382873 pmcid: 3559649 doi: 10.1371/journal.pone.0054131
Guinamard, R., Paulais, M., Lourdel, S. & Teulon, J. A calcium-permeable non-selective cation channel in the thick ascending limb apical membrane of the mouse kidney. Biochim. Biophys. Acta 1818, 1135–1141 (2012).
pubmed: 22230350 doi: 10.1016/j.bbamem.2011.12.024
Flannery, R. J., Kleene, N. K. & Kleene, S. J. A TRPM4-dependent current in murine renal primary cilia. Am. J. Physiol. Ren. Physiol. 309, F697–F707 (2015).
doi: 10.1152/ajprenal.00294.2015
Bergmann, C. et al. Polycystic kidney disease. Nat. Rev. Dis. Prim. 4, 50 (2018).
pubmed: 30523303 doi: 10.1038/s41572-018-0047-y
Prawitt, D. et al. Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum. Mol. Genet. 9, 203–216 (2000).
pubmed: 10607831 doi: 10.1093/hmg/9.2.203
Zhang, Y. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 (2003).
pubmed: 12581520 doi: 10.1016/S0092-8674(03)00071-0
Perez, C. A. et al. A transient receptor potential channel expressed in taste receptor cells. Nat. Neurosci. 5, 1169–1176 (2002).
pubmed: 12368808 doi: 10.1038/nn952
Colsoul, B. et al. Loss of high-frequency glucose-induced Ca
pubmed: 20194741 pmcid: 2841940 doi: 10.1073/pnas.0913107107
Kaske, S. et al. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci. 8, 49 (2007).
pubmed: 17610722 pmcid: 1931605 doi: 10.1186/1471-2202-8-49
Deckmann, K. et al. Cholinergic urethral brush cells are widespread throughout placental mammals. Int. Immunopharmacol. 29, 51–56 (2015).
pubmed: 26044348 doi: 10.1016/j.intimp.2015.05.038
Kotas, M. E., O’Leary, C. E. & Locksley, R. M. Tuft cells: context- and tissue-specific programming for a conserved cell lineage. Annu. Rev. Pathol. 18, 311–335 (2023).
pubmed: 36351364 doi: 10.1146/annurev-pathol-042320-112212
Schneider, C., O’Leary, C. E. & Locksley, R. M. Regulation of immune responses by tuft cells. Nat. Rev. Immunol. 19, 584–593 (2019).
pubmed: 31114038 pmcid: 8331098 doi: 10.1038/s41577-019-0176-x
Deckmann, K. et al. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. Proc. Natl Acad. Sci. USA 111, 8287–8292 (2014).
pubmed: 24843119 pmcid: 4050540 doi: 10.1073/pnas.1402436111
Schreibing, F. & Kramann, R. Mapping the human kidney using single-cell genomics. Nat. Rev. Nephrol. 18, 347–360 (2022).
pubmed: 35301441 doi: 10.1038/s41581-022-00553-4

Auteurs

Vladimir Chubanov (V)

Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany. vladimir.chubanov@lrz.uni-muenchen.de.

Michael Köttgen (M)

Renal Division, Department of Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
CIBSS - Centre for Integrative Biological Signalling Studies, Freiburg, Germany.

Rhian M Touyz (RM)

Research Institute of McGill University Health Centre, McGill University, Montreal, Quebec, Canada.

Thomas Gudermann (T)

Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany. thomas.gudermann@lrz.uni-muenchen.de.

Classifications MeSH