TRPM channels in health and disease.
Journal
Nature reviews. Nephrology
ISSN: 1759-507X
Titre abrégé: Nat Rev Nephrol
Pays: England
ID NLM: 101500081
Informations de publication
Date de publication:
18 Oct 2023
18 Oct 2023
Historique:
accepted:
25
09
2023
medline:
19
10
2023
pubmed:
19
10
2023
entrez:
18
10
2023
Statut:
aheadofprint
Résumé
Different cell channels and transporters tightly regulate cytoplasmic levels and the intraorganelle distribution of cations. Perturbations in these processes lead to human diseases that are frequently associated with kidney impairment. The family of melastatin-related transient receptor potential (TRPM) channels, which has eight members in mammals (TRPM1-TRPM8), includes ion channels that are highly permeable to divalent cations, such as Ca
Identifiants
pubmed: 37853091
doi: 10.1038/s41581-023-00777-y
pii: 10.1038/s41581-023-00777-y
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. Springer Nature Limited.
Références
Cosens, D. J. & Manning, A. Abnormal electroretinogram from a Drosophila mutant. Nature 224, 285–287 (1969).
pubmed: 5344615
doi: 10.1038/224285a0
Montell, C. & Rubin, G. M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2, 1313–1323 (1989).
pubmed: 2516726
doi: 10.1016/0896-6273(89)90069-X
Wong, F. et al. Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult. Neuron 3, 81–94 (1989).
pubmed: 2482778
doi: 10.1016/0896-6273(89)90117-7
Minke, B., Wu, C. & Pak, W. L. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature 258, 84–87 (1975).
pubmed: 810728
doi: 10.1038/258084a0
Montell, C. The TRP superfamily of cation channels. Sci. STKE 2005, re3 (2005).
pubmed: 15728426
doi: 10.1126/stke.2722005re3
Clapham, D. E., Montell, C., Schultz, G. & Julius, D. International Union of Pharmacology International Union of Pharmacology. XLIII. Compendium of voltage-gated ion channels: transient receptor potential channels. Pharmacol. Rev. 55, 591–596 (2003).
pubmed: 14657417
doi: 10.1124/pr.55.4.6
Venkatachalam, K. & Montell, C. TRP channels. Annu. Rev. Biochem. 76, 387–417 (2007).
pubmed: 17579562
pmcid: 4196875
doi: 10.1146/annurev.biochem.75.103004.142819
Ledford, H. & Callaway, E. Medicine Nobel goes to scientists who discovered biology of senses. Nature 598, 246 (2021).
pubmed: 34608291
doi: 10.1038/d41586-021-01283-6
Koivisto, A. P., Belvisi, M. G., Gaudet, R. & Szallasi, A. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat. Rev. Drug. Discov. 21, 41–59 (2022).
pubmed: 34526696
doi: 10.1038/s41573-021-00268-4
Vanneste, M., Segal, A., Voets, T. & Everaerts, W. Transient receptor potential channels in sensory mechanisms of the lower urinary tract. Nat. Rev. Urol. 18, 139–159 (2021).
pubmed: 33536636
doi: 10.1038/s41585-021-00428-6
Hof, T. et al. Transient receptor potential channels in cardiac health and disease. Nat. Rev. Cardiol. 16, 344–360 (2019).
pubmed: 30664669
doi: 10.1038/s41569-018-0145-2
Woudenberg-Vrenken, T. E., Bindels, R. J. & Hoenderop, J. G. The role of transient receptor potential channels in kidney disease. Nat. Rev. Nephrol. 5, 441–449 (2009).
pubmed: 19546862
doi: 10.1038/nrneph.2009.100
Patel, A. & Honore, E. Polycystins and renovascular mechanosensory transduction. Nat. Rev. Nephrol. 6, 530–538 (2010).
pubmed: 20625375
doi: 10.1038/nrneph.2010.97
Duncan, L. M. et al. Down-regulation of the novel gene melastatin correlates with potential for melanoma metastasis. Cancer Res. 58, 1515–1520 (1998).
pubmed: 9537257
Xu, X. Z., Moebius, F., Gill, D. L. & Montell, C. Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc. Natl Acad. Sci. USA 98, 10692–10697 (2001).
pubmed: 11535825
pmcid: 58528
doi: 10.1073/pnas.191360198
Wehage, E. et al. Activation of the cation channel long transient receptor potential channel 2 (LTRPC2) by hydrogen peroxide. A splice variant reveals a mode of activation independent of ADP-ribose. J. Biol. Chem. 277, 23150–23156 (2002).
pubmed: 11960981
doi: 10.1074/jbc.M112096200
Oberwinkler, J., Lis, A., Giehl, K. M., Flockerzi, V. & Philipp, S. E. Alternative splicing switches the divalent cation selectivity of TRPM3 channels. J. Biol. Chem. 280, 22540–22548 (2005).
pubmed: 15824111
doi: 10.1074/jbc.M503092200
Hofmann, T., Chubanov, V., Gudermann, T. & Montell, C. TRPM5 is a voltage-modulated and Ca
pubmed: 12842017
doi: 10.1016/S0960-9822(03)00431-7
Launay, P. et al. TRPM4 is a Ca
pubmed: 12015988
doi: 10.1016/S0092-8674(02)00719-5
Chubanov, V. et al. Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc. Natl Acad. Sci. USA 101, 2894–2899 (2004).
pubmed: 14976260
pmcid: 365716
doi: 10.1073/pnas.0305252101
Runnels, L. W., Yue, L. & Clapham, D. E. The TRPM7 channel is inactivated by PIP
pubmed: 11941371
doi: 10.1038/ncb781
Lambert, S. et al. Transient receptor potential melastatin 1 (TRPM1) is an ion-conducting plasma membrane channel inhibited by zinc ions. J. Biol. Chem. 286, 12221–12233 (2011).
pubmed: 21278253
pmcid: 3069426
doi: 10.1074/jbc.M110.202945
Zhang, Z., Toth, B., Szollosi, A., Chen, J. & Csanady, L. Structure of a TRPM2 channel in complex with Ca
pubmed: 29745897
pmcid: 5976436
doi: 10.7554/eLife.36409
Yin, Y. et al. Visualizing structural transitions of ligand-dependent gating of the TRPM2 channel. Nat. Commun. 10, 3740 (2019).
pubmed: 31431622
pmcid: 6702222
doi: 10.1038/s41467-019-11733-5
Huang, Y., Winkler, P. A., Sun, W., Lu, W. & Du, J. Architecture of the TRPM2 channel and its activation mechanism by ADP-ribose and calcium. Nature 562, 145–149 (2018).
pubmed: 30250252
doi: 10.1038/s41586-018-0558-4
Huang, Y., Roth, B., Lu, W. & Du, J. Ligand recognition and gating mechanism through three ligand-binding sites of human TRPM2 channel. Elife 8, e50175 (2019).
pubmed: 31513012
pmcid: 6759353
doi: 10.7554/eLife.50175
Wang, L. et al. Structures and gating mechanism of human TRPM2. Science 362, eaav4809 (2018).
pubmed: 30467180
pmcid: 6459600
doi: 10.1126/science.aav4809
Yu, X. et al. Structural and functional basis of the selectivity filter as a gate in human TRPM2 channel. Cell Rep. 37, 110025 (2021).
pubmed: 34788616
doi: 10.1016/j.celrep.2021.110025
Zhao, C. & MacKinnon, R. Structural and functional analyses of a GPCR-inhibited ion channel TRPM3. Neuron 111, 81–91.e7 (2023).
pubmed: 36283409
doi: 10.1016/j.neuron.2022.10.002
Guo, J. et al. Structures of the calcium-activated, non-selective cation channel TRPM4. Nature 552, 205–209 (2017).
pubmed: 29211714
pmcid: 5901961
doi: 10.1038/nature24997
Autzen, H. E. et al. Structure of the human TRPM4 ion channel in a lipid nanodisc. Science 359, 228–232 (2018).
pubmed: 29217581
doi: 10.1126/science.aar4510
Winkler, P. A., Huang, Y., Sun, W., Du, J. & Lu, W. Electron cryo-microscopy structure of a human TRPM4 channel. Nature 552, 200–204 (2017).
pubmed: 29211723
doi: 10.1038/nature24674
Duan, J. et al. Structure of full-length human TRPM4. Proc. Natl Acad. Sci. USA 115, 2377–2382 (2018).
pubmed: 29463718
pmcid: 5877947
doi: 10.1073/pnas.1722038115
Ruan, Z. et al. Structures of the TRPM5 channel elucidate mechanisms of activation and inhibition. Nat. Struct. Mol. Biol. 28, 604–613 (2021).
pubmed: 34168372
pmcid: 8767786
doi: 10.1038/s41594-021-00607-4
Duan, J. et al. Structure of the mammalian TRPM7, a magnesium channel required during embryonic development. Proc. Natl Acad. Sci. USA 115, E8201–E8210 (2018).
pubmed: 30108148
pmcid: 6126765
doi: 10.1073/pnas.1810719115
Nadezhdin, K. D. et al. Structural mechanisms of TRPM7 activation and inhibition. Nat. Commun. 14, 2639 (2023).
pubmed: 37156763
pmcid: 10167348
doi: 10.1038/s41467-023-38362-3
Yin, Y. et al. Structure of the cold- and menthol-sensing ion channel TRPM8. Science 359, 237–241 (2018).
pubmed: 29217583
doi: 10.1126/science.aan4325
Yin, Y. et al. Structural basis of cooling agent and lipid sensing by the cold-activated TRPM8 channel. Science 363, eaav9334 (2019).
pubmed: 30733385
pmcid: 6478609
doi: 10.1126/science.aav9334
Diver, M. M., Cheng, Y. & Julius, D. Structural insights into TRPM8 inhibition and desensitization. Science 365, 1434–1440 (2019).
pubmed: 31488702
pmcid: 7262954
doi: 10.1126/science.aax6672
Zhao, C. et al. Structures of a mammalian TRPM8 in closed state. Nat. Commun. 13, 3113 (2022).
pubmed: 35662242
pmcid: 9166780
doi: 10.1038/s41467-022-30919-y
Yin, Y. et al. Activation mechanism of the mouse cold-sensing TRPM8 channel by cooling agonist and PIP
pubmed: 36227998
pmcid: 9795508
doi: 10.1126/science.add1268
Oancea, E. et al. TRPM1 forms ion channels associated with melanin content in melanocytes. Sci. Signal. 2, ra21 (2009).
pubmed: 19436059
pmcid: 4086358
doi: 10.1126/scisignal.2000146
Morgans, C. W. et al. TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc. Natl Acad. Sci. USA 106, 19174–19178 (2009).
pubmed: 19861548
pmcid: 2776419
doi: 10.1073/pnas.0908711106
Shen, Y. et al. A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. J. Neurosci. 29, 6088–6093 (2009).
pubmed: 19439586
pmcid: 2752970
doi: 10.1523/JNEUROSCI.0132-09.2009
Schneider, F. M., Mohr, F., Behrendt, M. & Oberwinkler, J. Properties and functions of TRPM1 channels in the dendritic tips of retinal ON-bipolar cells. Eur. J. Cell Biol. 94, 420–427 (2015).
pubmed: 26111660
doi: 10.1016/j.ejcb.2015.06.005
Shen, Y., Rampino, M. A., Carroll, R. C. & Nawy, S. G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer. Proc. Natl Acad. Sci. USA 109, 8752–8757 (2012).
pubmed: 22586107
pmcid: 3365217
doi: 10.1073/pnas.1117433109
Xu, Y. et al. The TRPM1 channel in ON-bipolar cells is gated by both the α and the βγ subunits of the G-protein Go. Sci. Rep. 6, 20940 (2016).
pubmed: 26883481
pmcid: 4756708
doi: 10.1038/srep20940
Iosifidis, C. et al. Clinical and genetic findings in TRPM1-related congenital stationary night blindness. Acta Ophthalmol. 100, e1332–e1339 (2022).
pubmed: 35633130
doi: 10.1111/aos.15186
van Genderen, M. M. et al. Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am. J. Hum. Genet. 85, 730–736 (2009).
pubmed: 19896109
pmcid: 2775826
doi: 10.1016/j.ajhg.2009.10.012
Audo, I. et al. TRPM1 is mutated in patients with autosomal-recessive complete congenital stationary night blindness. Am. J. Hum. Genet. 85, 720–729 (2009).
pubmed: 19896113
pmcid: 2775830
doi: 10.1016/j.ajhg.2009.10.013
Li, Z. et al. Recessive mutations of the gene TRPM1 abrogate ON bipolar cell function and cause complete congenital stationary night blindness in humans. Am. J. Hum. Genet. 85, 711–719 (2009).
pubmed: 19878917
pmcid: 2775833
doi: 10.1016/j.ajhg.2009.10.003
Wagner, T. F. et al. TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflugers Arch. 460, 755–765 (2010).
pubmed: 20401728
doi: 10.1007/s00424-010-0838-9
Held, K. et al. Mutations in the voltage-sensing domain affect the alternative ion permeation pathway in the TRPM3 channel. J. Physiol. 596, 2413–2432 (2018).
pubmed: 29604058
pmcid: 6002228
doi: 10.1113/JP274124
Persoons, E., Kerselaers, S., Voets, T., Vriens, J. & Held, K. Partial agonistic actions of sex hormone steroids on TRPM3 function. Int. J. Mol. Sci. 22, 13652 (2021).
pubmed: 34948452
pmcid: 8708174
doi: 10.3390/ijms222413652
Wagner, T. F. et al. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic β cells. Nat. Cell Biol. 10, 1421–1430 (2008).
pubmed: 18978782
doi: 10.1038/ncb1801
Toth, B. I. et al. Regulation of the transient receptor potential channel TRPM3 by phosphoinositides. J. Gen. Physiol. 146, 51–63 (2015).
pubmed: 26123194
pmcid: 4485019
doi: 10.1085/jgp.201411339
Zhao, S., Carnevale, V., Gabrielle, M., Gianti, E. & Rohacs, T. Computational and functional studies of the PI(4,5)P
pubmed: 36181791
pmcid: 9647539
doi: 10.1016/j.jbc.2022.102547
Behrendt, M. et al. The structural basis for an on-off switch controlling Gβγ-mediated inhibition of TRPM3 channels. Proc. Natl Acad. Sci. USA 117, 29090–29100 (2020).
pubmed: 33122432
pmcid: 7682392
doi: 10.1073/pnas.2001177117
Dembla, S. et al. Anti-nociceptive action of peripheral mu-opioid receptors by G-beta-gamma protein-mediated inhibition of TRPM3 channels. Elife 6, e26280 (2017).
pubmed: 28826482
pmcid: 5593507
doi: 10.7554/eLife.26280
Vriens, J. et al. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70, 482–494 (2011).
pubmed: 21555074
doi: 10.1016/j.neuron.2011.02.051
Mulier, M. et al. Upregulation of TRPM3 in nociceptors innervating inflamed tissue. Elife 9, e61103 (2020).
pubmed: 32880575
pmcid: 7470828
doi: 10.7554/eLife.61103
Vanneste, M. et al. TRPM3 is expressed in afferent bladder neurons and is upregulated during bladder inflammation. Int. J. Mol. Sci. 23, 107 (2021).
pubmed: 35008533
pmcid: 8745475
doi: 10.3390/ijms23010107
Zhao, M. et al. Upregulation of transient receptor potential cation channel subfamily M member-3 in bladder afferents is involved in chronic pain in cyclophosphamide-induced cystitis. Pain 163, 2200–2212 (2022).
pubmed: 35413036
doi: 10.1097/j.pain.0000000000002616
Dyment, D. A. et al. De novo substitutions of TRPM3 cause intellectual disability and epilepsy. Eur. J. Hum. Genet. 27, 1611–1618 (2019).
pubmed: 31278393
pmcid: 6777445
doi: 10.1038/s41431-019-0462-x
Van Hoeymissen, E. et al. Gain of channel function and modified gating properties in TRPM3 mutants causing intellectual disability and epilepsy. Elife 9, e57190 (2020).
pubmed: 32427099
pmcid: 7253177
doi: 10.7554/eLife.57190
Burglen, L. et al. Gain-of-function variants in the ion channel gene TRPM3 underlie a spectrum of neurodevelopmental disorders. Elife 12, e81032 (2023).
pubmed: 36648066
pmcid: 9886277
doi: 10.7554/eLife.81032
Lines, M. A. et al. Phenotypic spectrum of the recurrent TRPM3 p.(Val837Met) substitution in seven individuals with global developmental delay and hypotonia. Am. J. Med. Genet. A 188, 1667–1675 (2022).
pubmed: 35146895
doi: 10.1002/ajmg.a.62673
Grimm, C., Kraft, R., Sauerbruch, S., Schultz, G. & Harteneck, C. Molecular and functional characterization of the melastatin-related cation channel TRPM3. J. Biol. Chem. 278, 21493–21501 (2003).
pubmed: 12672799
doi: 10.1074/jbc.M300945200
Siroky, B. J. et al. Primary cilia regulate the osmotic stress response of renal epithelial cells through TRPM3. Am. J. Physiol. Ren. Physiol. 312, F791–F805 (2017).
doi: 10.1152/ajprenal.00465.2015
Kleene, S. J. et al. The TRPP2-dependent channel of renal primary cilia also requires TRPM3. PLoS ONE 14, e0214053 (2019).
pubmed: 30883612
pmcid: 6422334
doi: 10.1371/journal.pone.0214053
Yamaguchi, H., Matsushita, M., Nairn, A. C. & Kuriyan, J. Crystal structure of the atypical protein kinase domain of a TRP channel with phosphotransferase activity. Mol. Cell 7, 1047–1057 (2001).
pubmed: 11389851
doi: 10.1016/S1097-2765(01)00256-8
Ryazanov, A. G. et al. Identification of a new class of protein kinases represented by eukaryotic elongation factor-2 kinase. Proc. Natl Acad. Sci. USA 94, 4884–4889 (1997).
pubmed: 9144159
pmcid: 24600
doi: 10.1073/pnas.94.10.4884
Montell, C. et al. A unified nomenclature for the superfamily of TRP cation channels. Mol. Cell 9, 229–231 (2002).
pubmed: 11864597
doi: 10.1016/S1097-2765(02)00448-3
Kerschbaum, H. H. & Cahalan, M. D. Single-channel recording of a store-operated Ca
pubmed: 9933165
doi: 10.1126/science.283.5403.836
Prakriya, M. & Lewis, R. S. Separation and characterization of currents through store-operated CRAC channels and Mg
pubmed: 11981025
pmcid: 2233817
doi: 10.1085/jgp.20028551
Kozak, J. A., Kerschbaum, H. H. & Cahalan, M. D. Distinct properties of CRAC and MIC channels in RBL cells. J. Gen. Physiol. 120, 221–235 (2002).
pubmed: 12149283
pmcid: 2234455
doi: 10.1085/jgp.20028601
Nadler, M. J. et al. LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411, 590–595 (2001).
pubmed: 11385574
doi: 10.1038/35079092
Schmitz, C. et al. Regulation of vertebrate cellular Mg
pubmed: 12887921
doi: 10.1016/S0092-8674(03)00556-7
Clapham, D. E., Runnels, L. W. & Strubing, C. The TRP ion channel family. Nat. Rev. Neurosci. 2, 387–396 (2001).
pubmed: 11389472
doi: 10.1038/35077544
Fleig, A. & Chubanov, V. TRPM7. Handb. Exp. Pharmacol. 222, 521–546 (2014).
pubmed: 24756720
pmcid: 5663634
doi: 10.1007/978-3-642-54215-2_21
Mittermeier, L. et al. TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. Proc. Natl Acad. Sci. USA 116, 4706–4715 (2019).
pubmed: 30770447
pmcid: 6410795
doi: 10.1073/pnas.1810633116
Abiria, S. A. et al. TRPM7 senses oxidative stress to release Zn
pubmed: 28696294
pmcid: 5544332
doi: 10.1073/pnas.1707380114
Monteilh-Zoller, M. K. et al. TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J. Gen. Physiol. 121, 49–60 (2003).
pubmed: 12508053
pmcid: 2217320
doi: 10.1085/jgp.20028740
Faouzi, M., Kilch, T., Horgen, F. D., Fleig, A. & Penner, R. The TRPM7 channel kinase regulates store-operated calcium entry. J. Physiol. 595, 3165–3180 (2017).
pubmed: 28130783
pmcid: 5430208
doi: 10.1113/JP274006
Demeuse, P., Penner, R. & Fleig, A. TRPM7 channel is regulated by magnesium nucleotides via its kinase domain. J. Gen. Physiol. 127, 421–434 (2006).
pubmed: 16533898
pmcid: 2151514
doi: 10.1085/jgp.200509410
Schmidt, E. et al. Structural mechanism of TRPM7 channel regulation by intracellular magnesium. Cell Mol. Life Sci. 79, 225 (2022).
pubmed: 35389104
pmcid: 8989868
doi: 10.1007/s00018-022-04192-7
Kozak, J. A., Matsushita, M., Nairn, A. C. & Cahalan, M. D. Charge screening by internal pH and polyvalent cations as a mechanism for activation, inhibition, and rundown of TRPM7/MIC channels. J. Gen. Physiol. 126, 499–514 (2005).
pubmed: 16260839
pmcid: 2266608
doi: 10.1085/jgp.200509324
Xie, J. et al. Phosphatidylinositol 4,5-bisphosphate (PIP
pubmed: 22180838
pmcid: 3238349
doi: 10.1038/srep00146
Clark, K. et al. Massive autophosphorylation of the Ser/Thr-rich domain controls protein kinase activity of TRPM6 and TRPM7. PLoS ONE 3, e1876 (2008).
pubmed: 18365021
pmcid: 2267223
doi: 10.1371/journal.pone.0001876
Matsushita, M. et al. Channel function is dissociated from the intrinsic kinase activity and autophosphorylation of TRPM7/ChaK1. J. Biol. Chem. 280, 20793–20803 (2005).
pubmed: 15781465
doi: 10.1074/jbc.M413671200
Kollewe, A. et al. The molecular appearance of native TRPM7 channel complexes identified by high-resolution proteomics. Elife 10, e68544 (2021).
pubmed: 34766907
pmcid: 8616561
doi: 10.7554/eLife.68544
Brandao, K., Deason-Towne, F., Zhao, X., Perraud, A. L. & Schmitz, C. TRPM6 kinase activity regulates TRPM7 trafficking and inhibits cellular growth under hypomagnesic conditions. Cell Mol. Life Sci. 71, 4853–4867 (2014).
pubmed: 24858416
pmcid: 4234683
doi: 10.1007/s00018-014-1647-7
Dorovkov, M. V. & Ryazanov, A. G. Phosphorylation of annexin I by TRPM7 channel-kinase. J. Biol. Chem. 279, 50643–50646 (2004).
pubmed: 15485879
doi: 10.1074/jbc.C400441200
Clark, K. et al. TRPM7 regulates myosin IIA filament stability and protein localization by heavy chain phosphorylation. J. Mol. Biol. 378, 790–803 (2008).
pubmed: 18394644
pmcid: 4541798
doi: 10.1016/j.jmb.2008.02.057
Perraud, A. L., Zhao, X., Ryazanov, A. G. & Schmitz, C. The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k. Cell Signal. 23, 586–593 (2011).
pubmed: 21112387
doi: 10.1016/j.cellsig.2010.11.011
Dorovkov, M. V., Beznosov, S. N., Shah, S., Kotlianskaia, L. & Kostiukova, A. S. Effect of mutations imitating the phosphorylation by TRPM7 kinase on the function of the N-terminal domain of tropomodulin [Russian]. Biofizika 53, 943–949 (2008).
pubmed: 19137675
Deason-Towne, F., Perraud, A. L. & Schmitz, C. Identification of Ser/Thr phosphorylation sites in the C2-domain of phospholipase C γ2 (PLCγ2) using TRPM7-kinase. Cell Signal. 24, 2070–2075 (2012).
pubmed: 22759789
pmcid: 4049354
doi: 10.1016/j.cellsig.2012.06.015
Romagnani, A. et al. TRPM7 kinase activity is essential for T cell colonization and alloreactivity in the gut. Nat. Commun. 8, 1917 (2017).
pubmed: 29203869
pmcid: 5714948
doi: 10.1038/s41467-017-01960-z
Voringer, S. et al. Inhibition of TRPM7 blocks MRTF/SRF-dependent transcriptional and tumorigenic activity. Oncogene 39, 2328–2344 (2020).
pubmed: 31844251
doi: 10.1038/s41388-019-1140-8
Ogata, K. et al. The crucial role of the TRPM7 kinase domain in the early stage of amelogenesis. Sci. Rep. 7, 18099 (2017).
pubmed: 29273814
pmcid: 5741708
doi: 10.1038/s41598-017-18291-0
Desai, B. N. et al. Cleavage of TRPM7 releases the kinase domain from the ion channel and regulates its participation in Fas-induced apoptosis. Dev. Cell 22, 1149–1162 (2012).
pubmed: 22698280
pmcid: 3397829
doi: 10.1016/j.devcel.2012.04.006
Krapivinsky, G., Krapivinsky, L., Manasian, Y. & Clapham, D. E. The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell 157, 1061–1072 (2014).
pubmed: 24855944
pmcid: 4156102
doi: 10.1016/j.cell.2014.03.046
Bai, Z. et al. CNNM proteins selectively bind to the TRPM7 channel to stimulate divalent cation entry into cells. PLoS Biol. 19, e3001496 (2021).
pubmed: 34928937
pmcid: 8726484
doi: 10.1371/journal.pbio.3001496
Runnels, L. W., Yue, L. & Clapham, D. E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043–1047 (2001).
pubmed: 11161216
doi: 10.1126/science.1058519
Schappe, M. S. et al. Efferocytosis requires periphagosomal Ca
pubmed: 35680919
pmcid: 9184625
doi: 10.1038/s41467-022-30959-4
Schappe, M. S. et al. Chanzyme TRPM7 mediates the Ca
pubmed: 29343440
pmcid: 5783319
doi: 10.1016/j.immuni.2017.11.026
Mendu, S. K. et al. Targeting the ion channel TRPM7 promotes the thymic development of regulatory T cells by promoting IL-2 signaling. Sci. Signal. 13, eaab0619 (2020).
doi: 10.1126/scisignal.abb0619
Jin, J. et al. Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg
pubmed: 18974357
pmcid: 2605283
doi: 10.1126/science.1163493
Sah, R. et al. Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. Proc. Natl Acad. Sci. USA 110, E3037–E3046 (2013).
pubmed: 23878236
pmcid: 3740880
doi: 10.1073/pnas.1311865110
Ryazanova, L. V. et al. Elucidating the role of the TRPM7 alpha-kinase: TRPM7 kinase inactivation leads to magnesium deprivation resistance phenotype in mice. Sci. Rep. 4, 7599 (2014).
pubmed: 25534891
pmcid: 4274504
doi: 10.1038/srep07599
Chubanov, V. & Gudermann, T. Mapping TRPM7 function by NS8593. Int. J. Mol. Sci. 21, 7017 (2020).
pubmed: 32977698
pmcid: 7582524
doi: 10.3390/ijms21197017
Bates-Withers, C., Sah, R. & Clapham, D. E. TRPM7, the Mg
pubmed: 21290295
doi: 10.1007/978-94-007-0265-3_9
Ryazanova, L. V. et al. TRPM7 is essential for Mg
pubmed: 21045827
doi: 10.1038/ncomms1108
Schutz, A. et al. Trophectoderm cell failure leads to peri-implantation lethality in Trpm7-deficient mouse embryos. Cell Rep. 37, 109851 (2021).
pubmed: 34686339
doi: 10.1016/j.celrep.2021.109851
Jin, J. et al. The channel kinase, TRPM7, is required for early embryonic development. Proc. Natl Acad. Sci. USA 109, E225–E233 (2012).
pubmed: 22203997
doi: 10.1073/pnas.1120033109
Sah, R. et al. The timing of myocardial Trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction and repolarization. Circulation 128, 101–114 (2013).
pubmed: 23734001
doi: 10.1161/CIRCULATIONAHA.112.000768
Rios, F. J. et al. Chanzyme TRPM7 protects against cardiovascular inflammation and fibrosis. Cardiovasc. Res. 116, 721–735 (2020).
pubmed: 31250885
doi: 10.1093/cvr/cvz164
Zou, Z. G., Rios, F. J., Montezano, A. C. & Touyz, R. M. TRPM7, magnesium, and signaling. Int. J. Mol. Sci. 20, 1877 (2019).
pubmed: 30995736
pmcid: 6515203
doi: 10.3390/ijms20081877
Antunes, T. T. et al. Transient receptor potential melastatin 7 cation channel kinase: new player in angiotensin II-induced hypertension. Hypertension 67, 763–773 (2016).
pubmed: 26928801
doi: 10.1161/HYPERTENSIONAHA.115.07021
Rios, F. J. et al. TRPM7 deficiency exacerbates cardiovascular and renal damage induced by aldosterone-salt. Commun. Biol. 5, 746 (2022).
pubmed: 35882956
pmcid: 9325869
doi: 10.1038/s42003-022-03715-z
Zierler, S. et al. TRPM7 kinase activity regulates murine mast cell degranulation. J. Physiol. 594, 2957–2970 (2016).
pubmed: 26660477
pmcid: 4887679
doi: 10.1113/JP271564
Suzuki, S., Penner, R. & Fleig, A. TRPM7 contributes to progressive nephropathy. Sci. Rep. 10, 2333 (2020).
pubmed: 32047249
pmcid: 7012919
doi: 10.1038/s41598-020-59355-y
Suzuki, S., Fleig, A. & Penner, R. CBGA ameliorates inflammation and fibrosis in nephropathy. Sci. Rep. 13, 6341 (2023).
pubmed: 37072467
pmcid: 10113213
doi: 10.1038/s41598-023-33507-2
Stritt, S. et al. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg
pubmed: 27020697
pmcid: 4820538
doi: 10.1038/ncomms11097
Gualdani, R. et al. A TRPM7 mutation linked to familial trigeminal neuralgia: omega current and hyperexcitability of trigeminal ganglion neurons. Proc. Natl Acad. Sci. USA 119, e2119630119 (2022).
pubmed: 36095216
pmcid: 9499596
doi: 10.1073/pnas.2119630119
Voets, T. et al. TRPM6 forms the Mg
pubmed: 14576148
doi: 10.1074/jbc.M311201200
Zhang, Z. et al. The TRPM6 kinase domain determines the Mg.ATP sensitivity of TRPM7/M6 heteromeric ion channels. J. Biol. Chem. 289, 5217–5227 (2014).
pubmed: 24385424
pmcid: 3931078
doi: 10.1074/jbc.M113.512285
Ferioli, S. et al. TRPM6 and TRPM7 differentially contribute to the relief of heteromeric TRPM6/7 channels from inhibition by cytosolic Mg
pubmed: 28821869
pmcid: 5562840
doi: 10.1038/s41598-017-08144-1
Chubanov, V. et al. Epithelial magnesium transport by TRPM6 is essential for prenatal development and adult survival. Elife 5, e20914 (2016).
pubmed: 27991852
pmcid: 5218537
doi: 10.7554/eLife.20914
Zhang, Z. et al. N-Myc-induced up-regulation of TRPM6/TRPM7 channels promotes neuroblastoma cell proliferation. Oncotarget 5, 7625–7634 (2014).
pubmed: 25277194
pmcid: 4202149
doi: 10.18632/oncotarget.2283
Chubanov, V., Gudermann, T. & Schlingmann, K. P. Essential role for TRPM6 in epithelial magnesium transport and body magnesium homeostasis. Pflugers Arch. 451, 228–234 (2005).
pubmed: 16075242
doi: 10.1007/s00424-005-1470-y
Krapivinsky, G. et al. Histone phosphorylation by TRPM6’s cleaved kinase attenuates adjacent arginine methylation to regulate gene expression. Proc. Natl Acad. Sci. USA 114, E7092–E7100 (2017).
pubmed: 28784805
pmcid: 5576826
doi: 10.1073/pnas.1708427114
Cao, G. et al. Methionine sulfoxide reductase B1 (MsrB1) recovers TRPM6 channel activity during oxidative stress. J. Biol. Chem. 285, 26081–26087 (2010).
pubmed: 20584906
pmcid: 2924009
doi: 10.1074/jbc.M110.103655
Cao, G. et al. Regulation of the epithelial Mg
pubmed: 19329436
pmcid: 2685660
doi: 10.1074/jbc.M808752200
Cao, G. et al. RACK1 inhibits TRPM6 activity via phosphorylation of the fused α-kinase domain. Curr. Biol. 18, 168–176 (2008).
pubmed: 18258429
doi: 10.1016/j.cub.2007.12.058
Walder, R. Y. et al. Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat. Genet. 31, 171–174 (2002).
pubmed: 12032570
doi: 10.1038/ng901
Schlingmann, K. P. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nat. Genet. 31, 166–170 (2002).
pubmed: 12032568
doi: 10.1038/ng889
Friedman, M., Hatcher, G. & Watson, L. Primary hypomagnesaemia with secondary hypocalcaemia in an infant. Lancet 1, 703–705 (1967).
pubmed: 4163945
doi: 10.1016/S0140-6736(67)92181-2
Vargas-Poussou, R. et al. Possible role for rare TRPM7 variants in patients with hypomagnesemia with secondary hypocalcemia. Nephrol. Dial. Transpl. 38, 679–690 (2022).
doi: 10.1093/ndt/gfac182
Konrad, M., Schlingmann, K. P. & Gudermann, T. Insights into the molecular nature of magnesium homeostasis. Am. J. Physiol. Ren. Physiol. 286, F599–F605 (2004).
doi: 10.1152/ajprenal.00312.2003
Walder, R. Y. et al. Mice defective in Trpm6 show embryonic mortality and neural tube defects. Hum. Mol. Genet. 18, 4367–4375 (2009).
pubmed: 19692351
pmcid: 2766295
doi: 10.1093/hmg/ddp392
Funato, Y., Yamazaki, D., Okuzaki, D., Yamamoto, N. & Miki, H. Importance of the renal ion channel TRPM6 in the circadian secretion of renin to raise blood pressure. Nat. Commun. 12, 3683 (2021).
pubmed: 34140503
pmcid: 8211686
doi: 10.1038/s41467-021-24063-2
Perraud, A. L. et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 595–599 (2001).
pubmed: 11385575
doi: 10.1038/35079100
Shen, B. W., Perraud, A. L., Scharenberg, A. & Stoddard, B. L. The crystal structure and mutational analysis of human NUDT9. J. Mol. Biol. 332, 385–398 (2003).
pubmed: 12948489
doi: 10.1016/S0022-2836(03)00954-9
Sano, Y. et al. Immunocyte Ca
pubmed: 11509734
doi: 10.1126/science.1062473
Kolisek, M., Beck, A., Fleig, A. & Penner, R. Cyclic ADP-ribose and hydrogen peroxide synergize with ADP-ribose in the activation of TRPM2 channels. Mol. Cell 18, 61–69 (2005).
pubmed: 15808509
doi: 10.1016/j.molcel.2005.02.033
Hara, Y. et al. LTRPC2 Ca
pubmed: 11804595
doi: 10.1016/S1097-2765(01)00438-5
Perraud, A. L. et al. Accumulation of free ADP-ribose from mitochondria mediates oxidative stress-induced gating of TRPM2 cation channels. J. Biol. Chem. 280, 6138–6148 (2005).
pubmed: 15561722
doi: 10.1074/jbc.M411446200
Toth, B. & Csanady, L. Identification of direct and indirect effectors of the transient receptor potential melastatin 2 (TRPM2) cation channel. J. Biol. Chem. 285, 30091–30102 (2010).
pubmed: 20650899
pmcid: 2943302
doi: 10.1074/jbc.M109.066464
McHugh, D., Flemming, R., Xu, S. Z., Perraud, A. L. & Beech, D. J. Critical intracellular Ca
pubmed: 12529379
doi: 10.1074/jbc.M210810200
Toth, B. & Csanady, L. Pore collapse underlies irreversible inactivation of TRPM2 cation channel currents. Proc. Natl Acad. Sci. USA 109, 13440–13445 (2012).
pubmed: 22847436
pmcid: 3421201
doi: 10.1073/pnas.1204702109
Song, K. et al. The TRPM2 channel is a hypothalamic heat sensor that limits fever and can drive hypothermia. Science 353, 1393–1398 (2016).
pubmed: 27562954
pmcid: 7612276
doi: 10.1126/science.aaf7537
Tan, C. H. & McNaughton, P. A. The TRPM2 ion channel is required for sensitivity to warmth. Nature 536, 460–463 (2016).
pubmed: 27533035
pmcid: 5720344
doi: 10.1038/nature19074
Yamamoto, S. et al. TRPM2-mediated Ca
pubmed: 18542050
pmcid: 2789807
doi: 10.1038/nm1758
Di, A. et al. The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat. Immunol. 13, 29–34 (2011).
pubmed: 22101731
pmcid: 3242890
doi: 10.1038/ni.2171
Uchida, K. et al. Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 60, 119–126 (2011).
pubmed: 20921208
doi: 10.2337/db10-0276
Haraguchi, K. et al. TRPM2 contributes to inflammatory and neuropathic pain through the aggravation of pronociceptive inflammatory responses in mice. J. Neurosci. 32, 3931–3941 (2012).
pubmed: 22423113
pmcid: 6703465
doi: 10.1523/JNEUROSCI.4703-11.2012
Wang, G. et al. Oxidant sensing by TRPM2 inhibits neutrophil migration and mitigates inflammation. Dev. Cell 38, 453–462 (2016).
pubmed: 27569419
pmcid: 5455786
doi: 10.1016/j.devcel.2016.07.014
Miller, B. A. et al. The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 304, H1010–H1022 (2013).
pubmed: 23376831
pmcid: 3625898
doi: 10.1152/ajpheart.00906.2012
Alim, I., Teves, L., Li, R., Mori, Y. & Tymianski, M. Modulation of NMDAR subunit expression by TRPM2 channels regulates neuronal vulnerability to ischemic cell death. J. Neurosci. 33, 17264–17277 (2013).
pubmed: 24174660
pmcid: 6618359
doi: 10.1523/JNEUROSCI.1729-13.2013
Ostapchenko, V. G. et al. The transient receptor potential melastatin 2 (TRPM2) channel contributes to β-amyloid oligomer-related neurotoxicity and memory impairment. J. Neurosci. 35, 15157–15169 (2015).
pubmed: 26558786
pmcid: 6605355
doi: 10.1523/JNEUROSCI.4081-14.2015
Gao, G. et al. TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1. J. Clin. Invest. 124, 4989–5001 (2014).
pubmed: 25295536
pmcid: 4347231
doi: 10.1172/JCI76042
Eraslan, E., Tanyeli, A., Polat, E. & Polat, E. 8-Br-cADPR, a TRPM2 ion channel antagonist, inhibits renal ischemia-reperfusion injury. J. Cell Physiol. 234, 4572–4581 (2019).
pubmed: 30191993
doi: 10.1002/jcp.27236
Tsavaler, L., Shapero, M. H., Morkowski, S. & Laus, R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61, 3760–3769 (2001).
pubmed: 11325849
McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).
pubmed: 11882888
doi: 10.1038/nature719
Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002).
pubmed: 11893340
doi: 10.1016/S0092-8674(02)00652-9
Voets, T. et al. The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430, 748–754 (2004).
pubmed: 15306801
doi: 10.1038/nature02732
Rohacs, T., Lopes, C. M., Michailidis, I. & Logothetis, D. E. PI(4,5)P
pubmed: 15852009
doi: 10.1038/nn1451
Mohandass, A. et al. TRPM8 as the rapid testosterone signaling receptor: implications in the regulation of dimorphic sexual and social behaviors. FASEB J. 34, 10887–10906 (2020).
pubmed: 32609392
doi: 10.1096/fj.202000794R
Knowlton, W. M., Bifolck-Fisher, A., Bautista, D. M. & McKemy, D. D. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 150, 340–350 (2010).
pubmed: 20542379
pmcid: 2897947
doi: 10.1016/j.pain.2010.05.021
Bautista, D. M. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448, 204–208 (2007).
pubmed: 17538622
doi: 10.1038/nature05910
Dhaka, A. et al. TRPM8 is required for cold sensation in mice. Neuron 54, 371–378 (2007).
pubmed: 17481391
doi: 10.1016/j.neuron.2007.02.024
Colburn, R. W. et al. Attenuated cold sensitivity in TRPM8 null mice. Neuron 54, 379–386 (2007).
pubmed: 17481392
doi: 10.1016/j.neuron.2007.04.017
Liu, B. et al. TRPM8 is the principal mediator of menthol-induced analgesia of acute and inflammatory pain. Pain 154, 2169–2177 (2013).
pubmed: 23820004
pmcid: 3778045
doi: 10.1016/j.pain.2013.06.043
Parra, A. et al. Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nat. Med. 16, 1396–1399 (2010).
pubmed: 21076394
doi: 10.1038/nm.2264
Ramachandran, R. et al. TRPM8 activation attenuates inflammatory responses in mouse models of colitis. Proc. Natl Acad. Sci. USA 110, 7476–7481 (2013).
pubmed: 23596210
pmcid: 3645521
doi: 10.1073/pnas.1217431110
Uvin, P. et al. Essential role of transient receptor potential M8 (TRPM8) in a model of acute cold-induced urinary urgency. Eur. Urol. 68, 655–661 (2015).
pubmed: 25843641
doi: 10.1016/j.eururo.2015.03.037
Anand, U., Korchev, Y. & Anand, P. The role of urea in neuronal degeneration and sensitization: an in vitro model of uremic neuropathy. Mol. Pain. 15, 1744806919881038 (2019).
pubmed: 31549574
pmcid: 6796209
doi: 10.1177/1744806919881038
Prawitt, D. et al. TRPM5 is a transient Ca
pubmed: 14634208
pmcid: 299937
doi: 10.1073/pnas.2334624100
Liu, D. & Liman, E. R. Intracellular Ca
pubmed: 14657398
pmcid: 299934
doi: 10.1073/pnas.2334159100
Nilius, B. et al. Voltage dependence of the Ca
pubmed: 12799367
doi: 10.1074/jbc.M305127200
Zhang, Z., Okawa, H., Wang, Y. & Liman, E. R. Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J. Biol. Chem. 280, 39185–39192 (2005).
pubmed: 16186107
doi: 10.1074/jbc.M506965200
Talavera, K. et al. Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438, 1022–1025 (2005).
pubmed: 16355226
doi: 10.1038/nature04248
Ullrich, N. D. et al. Comparison of functional properties of the Ca
pubmed: 15670874
doi: 10.1016/j.ceca.2004.11.001
Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. F. Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294, 752–754 (1981).
pubmed: 6275271
doi: 10.1038/294752a0
Vennekens, R. et al. Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat. Immunol. 8, 312–320 (2007).
pubmed: 17293867
doi: 10.1038/ni1441
Mathar, I. et al. Increased catecholamine secretion contributes to hypertension in TRPM4-deficient mice. J. Clin. Invest. 120, 3267–3279 (2010).
pubmed: 20679729
pmcid: 2929713
doi: 10.1172/JCI41348
Schattling, B. et al. TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 18, 1805–1811 (2012).
pubmed: 23160238
doi: 10.1038/nm.3015
Launay, P. et al. TRPM4 regulates calcium oscillations after T cell activation. Science 306, 1374–1377 (2004).
pubmed: 15550671
doi: 10.1126/science.1098845
Barbet, G. et al. The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat. Immunol. 9, 1148–1156 (2008).
pubmed: 18758465
pmcid: 2956271
doi: 10.1038/ni.1648
Gerzanich, V. et al. De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat. Med. 15, 185–191 (2009).
pubmed: 19169264
pmcid: 2730968
doi: 10.1038/nm.1899
Kruse, M. et al. Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J. Clin. Invest. 119, 2737–2744 (2009).
pubmed: 19726882
pmcid: 2735920
doi: 10.1172/JCI38292
Stallmeyer, B. et al. Mutational spectrum in the Ca
pubmed: 21887725
doi: 10.1002/humu.21599
Liu, H. et al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS ONE 8, e54131 (2013).
pubmed: 23382873
pmcid: 3559649
doi: 10.1371/journal.pone.0054131
Guinamard, R., Paulais, M., Lourdel, S. & Teulon, J. A calcium-permeable non-selective cation channel in the thick ascending limb apical membrane of the mouse kidney. Biochim. Biophys. Acta 1818, 1135–1141 (2012).
pubmed: 22230350
doi: 10.1016/j.bbamem.2011.12.024
Flannery, R. J., Kleene, N. K. & Kleene, S. J. A TRPM4-dependent current in murine renal primary cilia. Am. J. Physiol. Ren. Physiol. 309, F697–F707 (2015).
doi: 10.1152/ajprenal.00294.2015
Bergmann, C. et al. Polycystic kidney disease. Nat. Rev. Dis. Prim. 4, 50 (2018).
pubmed: 30523303
doi: 10.1038/s41572-018-0047-y
Prawitt, D. et al. Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum. Mol. Genet. 9, 203–216 (2000).
pubmed: 10607831
doi: 10.1093/hmg/9.2.203
Zhang, Y. et al. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112, 293–301 (2003).
pubmed: 12581520
doi: 10.1016/S0092-8674(03)00071-0
Perez, C. A. et al. A transient receptor potential channel expressed in taste receptor cells. Nat. Neurosci. 5, 1169–1176 (2002).
pubmed: 12368808
doi: 10.1038/nn952
Colsoul, B. et al. Loss of high-frequency glucose-induced Ca
pubmed: 20194741
pmcid: 2841940
doi: 10.1073/pnas.0913107107
Kaske, S. et al. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci. 8, 49 (2007).
pubmed: 17610722
pmcid: 1931605
doi: 10.1186/1471-2202-8-49
Deckmann, K. et al. Cholinergic urethral brush cells are widespread throughout placental mammals. Int. Immunopharmacol. 29, 51–56 (2015).
pubmed: 26044348
doi: 10.1016/j.intimp.2015.05.038
Kotas, M. E., O’Leary, C. E. & Locksley, R. M. Tuft cells: context- and tissue-specific programming for a conserved cell lineage. Annu. Rev. Pathol. 18, 311–335 (2023).
pubmed: 36351364
doi: 10.1146/annurev-pathol-042320-112212
Schneider, C., O’Leary, C. E. & Locksley, R. M. Regulation of immune responses by tuft cells. Nat. Rev. Immunol. 19, 584–593 (2019).
pubmed: 31114038
pmcid: 8331098
doi: 10.1038/s41577-019-0176-x
Deckmann, K. et al. Bitter triggers acetylcholine release from polymodal urethral chemosensory cells and bladder reflexes. Proc. Natl Acad. Sci. USA 111, 8287–8292 (2014).
pubmed: 24843119
pmcid: 4050540
doi: 10.1073/pnas.1402436111
Schreibing, F. & Kramann, R. Mapping the human kidney using single-cell genomics. Nat. Rev. Nephrol. 18, 347–360 (2022).
pubmed: 35301441
doi: 10.1038/s41581-022-00553-4