Anion-π interactions suppress phase impurities in FAPbI
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
16
09
2022
accepted:
13
09
2023
medline:
27
11
2023
pubmed:
19
10
2023
entrez:
18
10
2023
Statut:
ppublish
Résumé
Achieving both high efficiency and long-term stability is the key to the commercialization of perovskite solar cells (PSCs)
Identifiants
pubmed: 37853122
doi: 10.1038/s41586-023-06637-w
pii: 10.1038/s41586-023-06637-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
531-537Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Rao, M. K. et al. Review on persistent challenges of perovskite solar cells’ stability. Sol. Energy 218, 469–491 (2021).
doi: 10.1016/j.solener.2021.03.005
Mohd Yusoff, A. R. B. et al. Passivation and process engineering approaches of halide perovskite films for high efficiency and stability perovskite solar cells. Energy Environ. Sci. 14, 2906–2953 (2021).
doi: 10.1039/D1EE00062D
Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).
doi: 10.1039/C8CS00853A
pubmed: 31187791
Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH
doi: 10.1063/1.4864778
Correa-Baena, J.-P. et al. Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science 363, 627–631 (2019).
doi: 10.1126/science.aah5065
pubmed: 30733417
National Renewable Energy Laboratory (NREL). Best Research-Cell Efficiencies. NREL https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.pdf (2023).
Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy 5, 35–49 (2020).
doi: 10.1038/s41560-019-0529-5
Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).
doi: 10.1038/natrevmats.2016.99
Ma, J.-P. et al. Defect-triggered phase transition in cesium lead halide perovskite nanocrystals. ACS Mater. Lett. 1, 185–191 (2019).
doi: 10.1021/acsmaterialslett.9b00128
Yuan, Y. & Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016).
doi: 10.1021/acs.accounts.5b00420
pubmed: 26820627
Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1, 1199–1205 (2016).
doi: 10.1021/acsenergylett.6b00495
Frohna, K. et al. Nanoscale chemical heterogeneity dominates the optoelectronic response of alloyed perovskite solar cells. Nat. Nanotechnol. 17, 190–196 (2022).
doi: 10.1038/s41565-021-01019-7
pubmed: 34811554
Wright, A. D. et al. Intrinsic quantum confinement in formamidinium lead triiodide perovskite. Nat. Mater. 19, 1201–1206 (2020).
doi: 10.1038/s41563-020-0774-9
pubmed: 32839586
Macpherson, S. et al. Local nanoscale phase impurities are degradation sites in halide perovskites. Nature 607, 294–300 (2022).
doi: 10.1038/s41586-022-04872-1
pubmed: 35609624
Doherty, T. A. S. et al. Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases. Science 374, 1598–1605 (2021).
doi: 10.1126/science.abl4890
pubmed: 34941391
Yang, W. S. et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015).
doi: 10.1126/science.aaa9272
pubmed: 25999372
Lee, J.-W. et al. Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 140, 6317–6324 (2018).
doi: 10.1021/jacs.8b01037
pubmed: 29723475
Kim, M. et al. Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3, 2179–2192 (2019).
doi: 10.1016/j.joule.2019.06.014
Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI
doi: 10.1038/s41586-021-03406-5
pubmed: 33820983
Lu, H. et al. Vapor-assisted deposition of highly efficient, stable black-phase FAPbI
doi: 10.1126/science.abb8985
pubmed: 33004488
Lee, J.-W., Kim, H.-S. & Park, N.-G. Lewis acid–base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016).
doi: 10.1021/acs.accounts.5b00440
pubmed: 26797391
Schottel, B. L., Chifotides, H. T. & Dunbar, K. R. Anion-π interactions. Chem. Soc. Rev. 37, 68–83 (2008).
doi: 10.1039/B614208G
pubmed: 18197334
Sun, X. et al. Halide anion–fullerene π noncovalent interactions: n-doping and a halide anion migration mechanism in p–i–n perovskite solar cells. J. Mater. Chem. A 5, 20720–20728 (2017).
doi: 10.1039/C7TA06335K
Kan, C. et al. Mitigating ion migration by polyethylene glycol-modified fullerene for perovskite solar cells with enhanced stability. ACS Energy Lett. 6, 3864–3872 (2021).
doi: 10.1021/acsenergylett.1c02030
Garau, C. et al. Cation–π versus anion–π interactions: energetic, charge transfer, and aromatic aspects. J. Phys. Chem. A 108, 9423–9427 (2004).
doi: 10.1021/jp047534x
Anstöter, C. S., Rogers, J. P. & Verlet, J. R. R. Spectroscopic determination of an anion–π bond strength. J. Am. Chem. Soc. 141, 6132–6135 (2019).
doi: 10.1021/jacs.9b01345
pubmed: 30938520
Stevenson, J. et al. Mayer bond order as a metric of complexation effectiveness in lead halide perovskite solutions. Chem. Mater. 29, 2435–2444 (2017).
doi: 10.1021/acs.chemmater.6b04327
Shargaieva, O., Kuske, L., Rappich, J., Unger, E. & Nickel, N. H. Building blocks of hybrid perovskites: a photoluminescence study of lead-iodide solution species. ChemPhysChem 21, 2327–2333 (2020).
doi: 10.1002/cphc.202000479
pubmed: 32786129
pmcid: 7702157
Barrit, D. et al. Room-temperature partial conversion of α-FAPbI
doi: 10.1002/adfm.201907442
Zhang, H. et al. Bottom-up quasi-epitaxial growth of hybrid perovskite from solution process-achieving high-efficiency solar cells via template-guided crystallization. Adv. Mater. 33, 2100009 (2021).
doi: 10.1002/adma.202100009
Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).
doi: 10.1021/ic401215x
pubmed: 23834108
Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).
doi: 10.1038/s41586-021-03285-w
pubmed: 33627807
Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).
Salzner, U. & Aydin, A. Improved prediction of properties of π-conjugated oligomers with range-separated hybrid density functionals. J. Chem. Theory Comput. 7, 2568–2583 (2011).
doi: 10.1021/ct2003447
pubmed: 26606630
Guha, S., Goodson, F. S., Corson, L. J. & Saha, S. Boundaries of anion/naphthalenediimide interactions: from anion–π interactions to anion-induced charge-transfer and electron-transfer phenomena. J. Am. Chem. Soc. 134, 13679–13691 (2012).
doi: 10.1021/ja303173n
pubmed: 22686833
Giese, M., Albrecht, M. & Rissanen, K. Anion–π interactions with fluoroarenes. Chem. Rev. 115, 8867–8895 (2015).
doi: 10.1021/acs.chemrev.5b00156
pubmed: 26278927