High-resolution maps show that rubber causes substantial deforestation.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
received:
03
12
2022
accepted:
13
09
2023
medline:
9
11
2023
pubmed:
19
10
2023
entrez:
18
10
2023
Statut:
ppublish
Résumé
Understanding the effects of cash crop expansion on natural forest is of fundamental importance. However, for most crops there are no remotely sensed global maps
Identifiants
pubmed: 37853124
doi: 10.1038/s41586-023-06642-z
pii: 10.1038/s41586-023-06642-z
pmc: PMC10632130
doi:
Substances chimiques
Rubber
9006-04-6
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
340-346Informations de copyright
© 2023. The Author(s).
Références
Goldman, E., Weisse, M. J., Harris, N. & Schenider, M. Estimating the Role of Seven Commodities in Agriculture-Linked Deforestation: Oil Palm, Soy, Cattle, Wood Fiber, Cocoa, Coffee and Rubber (World Resources Institute, 2020).
Hurni, K. & Fox, J. The expansion of tree-based boom crops in mainland Southeast Asia: 2001 to 2014. J. Land Use Sci. 13, 198–219 (2018).
doi: 10.1080/1747423X.2018.1499830
Pendrill, F., Persson, U., Kastner, T. & Wood, R. Deforestation risk embodied in production and consumption of agricultural and forestry commodities 2005–2018. Zenodo https://doi.org/10.5281/zenodo.5886600 (2022).
Pendrill, F., Persson, U. & Kastner, T. Deforestation risk embodied in production and consumption of agricultural and forestry commodities 2005–2017. Zenodo https://doi.org/10.5281/zenodo.4250532 (2020).
Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).
doi: 10.1016/j.rse.2017.06.031
Molotoks, A. & West, C. Which forest-risk commodities imported to the UK have the highest overseas impacts? A rapid evidence synthesis. Emerald Open Res. 3, 22 (2021).
Impact Assessment—Minimising the Risk of Deforestation and Forest Degradation Associated with Products Placed on the EU Market Part 1 (European Commission, 2021); https://ec.europa.eu/environment/forests/pdf/SWD_2021_326_1_EN_Deforestation%20impact_assessment_part1.pdf .
Assessing the G7s International Deforestation Footprint and Measures to Tackle it (Food and Land Use Coalition, 2022); https://www.foodandlandusecoalition.org/wp-content/uploads/2022/09/Assessing-the-G7s-international-deforestation-footprint-and-measures-to-tackle-it.pdf .
Pendrill, F. et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science 377, eabm9267 (2022).
pubmed: 36074840
doi: 10.1126/science.abm9267
Descals, A. et al. High-resolution global map of smallholder and industrial closed-canopy oil palm plantations. Earth Syst. Sci. Data 13, 1211–1231 (2021).
doi: 10.5194/essd-13-1211-2021
Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ab0d41 (2019).
Pendrill, F. et al. Agricultural and forestry trade drives large share of tropical deforestation emissions. Global Environ. Change 56, 1–10 (2019).
doi: 10.1016/j.gloenvcha.2019.03.002
Warren-Thomas, E., Dolman, P. M. & Edwards, D. P. Increasing demand for natural rubber necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity. Conserv. Lett. 8, 230–241 (2015).
doi: 10.1111/conl.12170
Warren-Thomas, E., Ahrends, A., Wang, Y., Wang, M. M. H. & Jones, J. P. G. Rubber’s inclusion in zero-deforestation legislation is necessary but not sufficient to reduce impacts on biodiversity. Conserv. Lett. https://doi.org/10.1111/conl.12967 (2023).
Laroche, P., Schulp, C. J. E., Kastner, T. & Verburg, P. H. Assessing the contribution of mobility in the European Union to rubber expansion. Ambio 51, 770–783 (2022).
pubmed: 34120297
doi: 10.1007/s13280-021-01579-x
Ahrends, A. et al. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Global Environ. Change 34, 48–58 (2015).
doi: 10.1016/j.gloenvcha.2015.06.002
Li, H., Aide, T. M., Ma, Y., Liu, W. & Cao, M. Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodivers. Conserv. 16, 1731–1745 (2006).
doi: 10.1007/s10531-006-9052-7
Feng, Y. et al. Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia. Nat. Sustain. 4, 892–899 (2021).
doi: 10.1038/s41893-021-00738-y
Guardiola-Claramonte, M. et al. Hydrologic effects of the expansion of rubber (Hevea brasiliensis) in a tropical catchment. Ecohydrology 3, 306–314 (2010).
doi: 10.1002/eco.110
Zeng, Z. et al. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 11, 556–562 (2018).
doi: 10.1038/s41561-018-0166-9
Kenney-Lazar, M., Wong, G., Baral, H. & Russell, A. J. M. Greening rubber? Political ecologies of plantation sustainability in Laos and Myanmar. Geoforum 92, 96–105 (2018).
doi: 10.1016/j.geoforum.2018.03.008
Grammelis, P., Margaritis, N., Dallas, P., Rakopoulos, D. & Mavrias, G. A review on management of end of life tires (ELTs) and alternative uses of textile fibers. Energies 14, 571 (2021).
FAOSTAT Statistical Database (FAO, 2022); https://www.fao.org/faostat/en/#data .
Feintrenie, L. Agro-industrial plantations in Central Africa, risks and opportunities. Biodivers. Conserv. 23, 1577–1589 (2014).
doi: 10.1007/s10531-014-0687-5
Li, Z. & Fox, J. M. Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data. Appl. Geogr. 32, 420–432 (2012).
doi: 10.1016/j.apgeog.2011.06.018
Fox, J. & Castella, J.-C. Expansion of rubber (Hevea brasiliensis) in mainland Southeast Asia: what are the prospects for smallholders? J. Peasant Stud. 40, 155–170 (2013).
doi: 10.1080/03066150.2012.750605
Hurni, K., Schneider, A., Heinimann, A., Nong, D. & Fox, J. Mapping the expansion of boom crops in mainland Southeast Asia using dense time stacks of Landsat Data. Remote Sens. 9, 320 (2017).
Xiao, C. et al. Latest 30-m map of mature rubber plantations in mainland Southeast Asia and Yunnan province of China: spatial patterns and geographical characteristics. Prog. Phys. Geogr. Earth Environ. https://doi.org/10.1177/0309133320983746 (2021).
Grogan, K., Pflugmacher, D., Hostert, P., Mertz, O. & Fensholt, R. Unravelling the link between global rubber price and tropical deforestation in Cambodia. Nat. Plants 5, 47–53 (2019).
pubmed: 30598534
doi: 10.1038/s41477-018-0325-4
Chen, H. et al. Pushing the limits: the pattern and dynamics of rubber monoculture expansion in Xishuangbanna, SW China. PLoS ONE 11, e0150062 (2016).
pubmed: 26907479
pmcid: 4764337
doi: 10.1371/journal.pone.0150062
Persson, M., Kastner, T. & Pendrill, F. Flawed Numbers Underpin Recommendations to Exclude Commodities from EU Deforestation Legislation (Focali, 2021); http://www.focali.se/filer/Focali%20brief_2021_02_Flawed%20numbers%20underpin%20recommendations%20to%20exclude%20commodities%20from%20EU%20deforestation%20legislation.pdf .
Kennedy, R. et al. Implementation of the LandTrendr algorithm on Google Earth Engine. Remote Sens. 10, 691 (2018).
Olofsson, P. et al. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 148, 42–57 (2014).
doi: 10.1016/j.rse.2014.02.015
Niu, F., Röll, A., Meijide, A., Hendrayanto & Hölscher, D. Rubber tree transpiration in the lowlands of Sumatra. Ecohydrology 10, e1882 (2017).
Grogan, K., Pflugmacher, D., Hostert, P., Kennedy, R. & Fensholt, R. Cross-border forest disturbance and the role of natural rubber in mainland Southeast Asia using annual Landsat time series. Remote Sens. Environ. 169, 438–453 (2015).
doi: 10.1016/j.rse.2015.03.001
World Database of Key Biodiversity Areas March 2022 version (BirdLife International, 2022)
Su, C.-W., Liu, L., Tao, R. & Lobonţ, O.-R. Do natural rubber price bubbles occur? Agric. Econ. 65, 67–73 (2019).
Zhang, J.-Q., Corlett, R. T. & Zhai, D. After the rubber boom: good news and bad news for biodiversity in Xishuangbanna, Yunnan, China. Reg. Environ. Change 19, 1713–1724 (2019).
doi: 10.1007/s10113-019-01509-4
Zanaga, D. et al. ESA WorldCover 10 m 2020 v100. Zenodo https://doi.org/10.5281/zenodo.5571936 (2021).
van Noordwijk, M., Tata, H. L., Xu, J., Dewi, S. & Minang, P. A. in Agroforestry—The Future of Global Land Use (eds Ramachandran Nair, P. K. & Garrity, D.) 69–104 (Springer, 2012).
Grass, I. et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat. Commun. 11, 1186 (2020).
pubmed: 32132531
pmcid: 7055322
doi: 10.1038/s41467-020-15013-5
Meijaard, E. & Sheil, D. The moral minefield of ethical oil palm and sustainable development. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2019.00022 (2019).
Feintrenie, L., Chong, W. K. & Levang, P. Why do farmers prefer oil palm? Lessons learnt from Bungo District, Indonesia. Small-scale For. 9, 379–396 (2010).
doi: 10.1007/s11842-010-9122-2
Fong, Y. C., Khin, A. A. & Lim, C. S. Determinants of natural rubber price instability for four major producing countries. Soc. Sci. Human. 28, 1179–1197 (2020).
Jayathilake, H. M., Jamaludin, J., De Alban, J. D. T., Webb, E. L. & Carrasco, L. R. The conversion of rubber to oil palm and other landcover types in Southeast Asia. Appl. Geogr. https://doi.org/10.1016/j.apgeog.2022.102838 (2023).
Soratana, K., Rasutis, D., Azarabadi, H., Eranki, P. L. & Landis, A. E. Guayule as an alternative source of natural rubber: a comparative life cycle assessment with Hevea and synthetic rubber. J. Clean. Prod. 159, 271–280 (2017).
doi: 10.1016/j.jclepro.2017.05.070
Wang, J. et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 586, 720–723 (2020).
pubmed: 33116288
doi: 10.1038/s41586-020-2849-9
Wigboldus, S. et al. Scaling green rubber cultivation in Southwest China—an integrative analysis of stakeholder perspectives. Sci. Total Environ. 580, 1475–1482 (2017).
pubmed: 28038875
doi: 10.1016/j.scitotenv.2016.12.126
Xu, J., Grumbine, R. E. & Beckschäfer, P. Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region. Ecol. Indic. 36, 749–756 (2014).
doi: 10.1016/j.ecolind.2012.08.023
FSC Webinar on Unlocking Sustainable Natural Rubber: How to Scale Early Successes for 2022 (FSC, 2021); https://www.youtube.com/watch?v=o-tnPmnR1e4 .
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
pubmed: 24233722
doi: 10.1126/science.1244693
Sexton, J. O. et al. Global 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Intl J. Digital Earth 6, 427–448 (2013).
Drusch, M. et al. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012).
doi: 10.1016/j.rse.2011.11.026
Louis, J. et al. Sentinel-2 Sen2Cor: L2A Processor for users in Proc. Living Planet Symposium 2016 (ed. Ouwehand, L.) 1–8 (Spacebooks Online, 2016).
Main-Knorn, M. et al. in Image and Signal Processing for Remote Sensing XXIII (ed. Bruzzone, L.) 37–48 (SPIE, 2018).
Louis, J. et al. Sentinel-2 global surface reflectance level-2A product generated with Sen2Cor. In IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2019).
Xiao, C., Li, P., Feng, Z., Liu, Y. & Zhang, X. Sentinel-2 red-edge spectral indices (RESI) suitability for mapping rubber boom in Luang Namtha Province, northern Lao PDR. Int. J. Appl. Earth Obs. Geoinf. 93, 102176 (2020).
Lin, Y. et al. Pattern and driving factor of intense defoliation of rubber plantations in SW China. Ecol. Indic. 94, 104–116 (2018).
doi: 10.1016/j.ecolind.2018.06.050
Rungwattana, K. et al. Trait evolution in tropical rubber (Hevea brasiliensis) trees is related to dry season intensity. Func. Ecol. 32, 2638–2651 (2018).
doi: 10.1111/1365-2435.13203
Diercke Weltatlas (Schulbuchverlage Westermann Schroedel Diesterweg Schoningh Winklers GmbH, 2015).
Alchemi, P. J. K. & Jamin, S. Impact of pestalotiopsis leaf fall disease on leaf area index and rubber plant production. IOP Conf. Ser. Earth Environ. Sci. 995, 012030 (2022).
Azizan, F. A., Astuti, I. S., Young, A. & Abdul Aziz, A. Rubber leaf fall phenomenon linked to increased temperature. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2023.108531 (2023).
Azizan, F. A. et al. Using multi-temporal satellite data to analyse phenological responses of rubber (Hevea brasiliensis) to climatic variations in South Sumatra, Indonesia. Remote Sens. https://doi.org/10.3390/rs13152932 (2021).
Razak, J. A. B. A., Shariff, A. R. B. M., Ahmad, N. B. & Ibrahim Sameen, M. Mapping rubber trees based on phenological analysis of Landsat time series data-sets. Geocarto Int. https://doi.org/10.1080/10106049.2017.1289559 (2017).
Sari, I. L., Weston, C. J., Newnham, G. J. & Volkova, L. Developing multi-source indices to discriminate between native tropical forests, oil palm and rubber plantations in Indonesia. Remote Sens. https://doi.org/10.3390/rs14010003 (2021).
Hengl, T. & Parente, L. Monthly precipitation in mm at 1 km resolution (multisource average) based on SM2RAIN-ASCAT 2007-2021, CHELSA Climate and WorldClim. Zenodo https://doi.org/10.5281/zenodo.6458580 (2022).
Li, L. et al. Product Validation Report (D12-PVR) (Wageningen Univ and IIASA, 2021); https://esa-worldcover.s3.eu-central-1.amazonaws.com/v100/2020/docs/WorldCover_PVR_V1.1.pdf
Lan, G. et al. Main drivers of plant diversity patterns of rubber plantations in the Greater Mekong Subregion. Biogeosciences 19, 1995–2005 (2022).
doi: 10.5194/bg-19-1995-2022
Yang, J., Xu, J. & Zhai, D.-L. Integrating phenological and geographical information with artificial intelligence algorithm to map rubber plantations in Xishuangbanna. Remote Sens. 13, 2793 (2021).
doi: 10.3390/rs13142793
Bey, A. et al. Collect Earth: land use and land cover assessment through augmented visual interpretation. Remote Sens. 8, 807 (2016).
doi: 10.3390/rs8100807
Markert, K. N. et al. GeoDash: assisting visual image interpretation in Collect Earth Online by leveraging big data on Google Earth Engine. In AGU Fall Meeting Abstracts Vol. 2017 (AGU, 2017).
Saah, D. et al. Collect Earth: an online tool for systematic reference data collection in land cover and use applications. Environ. Model. Softw. 118, 166–171 (2019).
doi: 10.1016/j.envsoft.2019.05.004
Yu, L. & Gong, P. Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives. Int. J. Remote Sens. 33, 3966–3986 (2012).
doi: 10.1080/01431161.2011.636081
Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo and Indonesia. Environ. Res. Lett. 13, 074028 (2018).
doi: 10.1088/1748-9326/aacd1c
Kennedy, R. E. et al. Implementation of the LandTrendr algorithm on Google Earth engine. Remote Sens. 10, 691 (2018).
doi: 10.3390/rs10050691
Zhu, Z., Wang, S. & Woodcock, C. E. Improvement and expansion of the Fmask algorithm: cloud, cloud shadow and snow detection for Landsats 4–7, 8 and Sentinel 2 images. Remote Sens. Environ. 159, 269–277 (2015).
doi: 10.1016/j.rse.2014.12.014