Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
30
09
2022
accepted:
31
08
2023
medline:
23
10
2023
pubmed:
19
10
2023
entrez:
18
10
2023
Statut:
ppublish
Résumé
Placing quantum materials into optical cavities provides a unique platform for controlling quantum cooperative properties of matter, by both weak and strong light-matter coupling
Identifiants
pubmed: 37853152
doi: 10.1038/s41586-023-06596-2
pii: 10.1038/s41586-023-06596-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
487-492Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science 373, eabd0336 (2021).
pubmed: 34244383
doi: 10.1126/science.abd0336
Schlawin, F., Kennes, D. M. & Sentef, M. A. Cavity quantum materials. Appl. Phys. Rev. 9, 011312 (2022).
doi: 10.1063/5.0083825
Jarc, G. et al. Tunable cryogenic terahertz cavity for strong light–matter coupling in complex materials. Rev. Sci. Instrum. 93, 033102 (2022).
pubmed: 35365020
doi: 10.1063/5.0080045
Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).
pubmed: 17805291
doi: 10.1038/nature06119
Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).
pubmed: 21233381
doi: 10.1126/science.1197294
Mitrano, M. et al. Possible light-induced superconductivity in K
pubmed: 26855424
pmcid: 4820655
doi: 10.1038/nature16522
Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).
pubmed: 24723607
doi: 10.1126/science.1241591
Giusti, F. et al. Signatures of enhanced superconducting phase coherence in optimally doped Bi
pubmed: 30822056
doi: 10.1103/PhysRevLett.122.067002
Montanaro, A. et al. Anomalous non-equilibrium response in black phosphorus to sub-gap mid-infrared excitation. Nat. Commun. 13, 2667 (2022).
pubmed: 35562345
pmcid: 9106664
doi: 10.1038/s41467-022-30341-4
Schlawin, F., Cavalleri, A. & Jaksch, D. Cavity-mediated electron-photon superconductivity. Phys. Rev. Lett. 122, 133602 (2019).
pubmed: 31012600
doi: 10.1103/PhysRevLett.122.133602
Curtis, J. B., Raines, Z. M., Allocca, A. A., Hafezi, M. & Galitski, V. M. Cavity quantum Eliashberg enhancement of superconductivity. Phys. Rev. Lett. 122, 167002 (2019).
pubmed: 31075022
doi: 10.1103/PhysRevLett.122.167002
Allocca, A. A., Raines, Z. M., Curtis, J. B. & Galitski, V. M. Cavity superconductor-polaritons. Phys. Rev. B 99, 020504(R) (2019).
doi: 10.1103/PhysRevB.99.020504
Laplace, Y., Fernandez-Pena, S., Gariglio, S., Triscone, J. M. & Cavalleri, A. Proposed cavity Josephson plasmonics with complex-oxide heterostructures. Phys. Rev. B 93, 075152 (2016).
doi: 10.1103/PhysRevB.93.075152
Gao, H., Schlawin, F., Buzzi, M., Cavalleri, A. & Jaksch, D. Photoinduced electron pairing in a driven cavity. Phys. Rev. Lett. 125, 053602 (2020).
pubmed: 32794849
doi: 10.1103/PhysRevLett.125.053602
Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity. Sci. Adv. 4, eaau6969 (2018).
pubmed: 30515456
pmcid: 6269157
doi: 10.1126/sciadv.aau6969
Li, J. & Eckstein, M. Manipulating intertwined orders in solids with quantum light. Phys. Rev. Lett. 125, 217402 (2020).
pubmed: 33275019
doi: 10.1103/PhysRevLett.125.217402
Latini, S., Ronca, E., De Giovannini, U., Hübener, H. & Rubio, A. Cavity control of excitons in two-dimensional materials. Nano Lett. 19, 3473–3479 (2019). 2019.
pubmed: 31046291
pmcid: 6674266
doi: 10.1021/acs.nanolett.9b00183
Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. X 10, 041027 (2020).
Latini, S. et al. The ferroelectric photo ground state of SrTiO
pubmed: 34315818
pmcid: 8346861
doi: 10.1073/pnas.2105618118
Lenk, K., Li, J., Werner, P. & Eckstein, M. Dynamical mean-field study of a photon-mediated ferroelectric phase transition. Phys. Rev. B 106, 245124 (2022).
doi: 10.1103/PhysRevB.106.245124
Soykal, Ö. O. & Flatté, E. Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 104, 077202 (2010).
pubmed: 20366911
doi: 10.1103/PhysRevLett.104.077202
Paravicini-Bagliani, G. L. et al. Magneto-transport controlled by Landau polariton states. Nat. Phys. 15, 186–190 (2019).
doi: 10.1038/s41567-018-0346-y
Appugliese, F. et al. Breakdown of topological protection by cavity vacuum fields in the integer quantum Hall effect. Science 375, 1030 (2022).
pubmed: 35239382
doi: 10.1126/science.abl5818
Thomas, A. et al. Large enhancement of ferromagnetism under a collective strong coupling of YBCO nanoparticles. Nano Lett. 21, 4365–4370 (2021).
pubmed: 33945283
pmcid: 8161414
doi: 10.1021/acs.nanolett.1c00973
Vaidyanathan, A. G., Spencer, W. P. & Kleppner, D. Inhibited absorption of blackbody radiation. Phys. Rev. Lett. 47, 1592 (1981).
doi: 10.1103/PhysRevLett.47.1592
Jones, A. C., O’Callahan, B. T., Yang, H. U. & Raschke, M. B. The thermal near-field: coherence, spectroscopy, heat transfer, and optical forces. Prog. Surf. Sci. 88, 349–392 (2013).
doi: 10.1016/j.progsurf.2013.07.001
Roberts, A. S., Chirumamilla, M., Thilsing-Hansen, K., Pedersen, K. & Bozhevolnyi, S. I. Near-infrared tailored thermal emission from wafer-scale continuous-film resonators. Opt. Express 23, A1111–A1119 (2015).
pubmed: 26406741
doi: 10.1364/OE.23.0A1111
Celanovic, I., Perreault, D. & Kassakian, J. Resonant-cavity enhanced thermal emission. Phys. Rev. B 72, 075127 (2005).
doi: 10.1103/PhysRevB.72.075127
Shiue, R.-J. et al. Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity. Nat. Commun. 10, 109 (2019).
pubmed: 30631048
pmcid: 6328560
doi: 10.1038/s41467-018-08047-3
Vaskivskyi, I. et al. Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS
pubmed: 26601218
pmcid: 4646782
doi: 10.1126/sciadv.1500168
Wang, Y. D. et al. Band insulator to Mott insulator transition in 1T-TaS
pubmed: 32839433
pmcid: 7445232
doi: 10.1038/s41467-020-18040-4
Sipos, B. et al. From Mott state to superconductivity in 1T-TaS
pubmed: 18997775
doi: 10.1038/nmat2318
Nakanishi, K. & Shiba, H. Domain-like incommensurate charge-density-wave states and the first-order incommensurate–commensurate transitions in layered tantalum dichalcogenides. I. 1T-polytype. J. Phys. Soc. Jpn 43, 1839–1847 (1977).
doi: 10.1143/JPSJ.43.1839
Nakanishi, K. & Shiba, H. Domain-like incommensurate charge-density-wave states and collective modes. J. Phys. Soc. Jpn 45, 1147–1156 (1978).
doi: 10.1143/JPSJ.45.1147
Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).
doi: 10.1080/00018737500101391
Burk, B., Thomson, R. E., Clarke, J. & Zettl, A. Surface and bulk charge density wave structure in 1 T-TaS
pubmed: 17832831
doi: 10.1126/science.257.5068.362
Thomson, R. E., Burk, B., Zettl, A. & Clarke, J. Scanning tunneling microscopy of the charge-density-wave structure in 1T-TaS
doi: 10.1103/PhysRevB.49.16899
Tsen, A. W. et al. Structure and control of charge density waves in two-dimensional 1T-TaS
pubmed: 26598707
pmcid: 4679066
doi: 10.1073/pnas.1512092112
Wang, W., Dietzel, D. & Schirmeisen, A. Lattice discontinuities of 1T-TaS
pubmed: 31068601
pmcid: 6506504
doi: 10.1038/s41598-019-43307-2
Gasparov, L. V. et al. Phonon anomaly at the charge ordering transition in 1T-TaS
doi: 10.1103/PhysRevB.66.094301
Dean, N. et al. Polaronic conductivity in the photoinduced phase of 1T-TaS
pubmed: 21231756
doi: 10.1103/PhysRevLett.106.016401
McMillan, W. L. Landau theory of charge-density waves in transition-metal dichalcogenides. Phys. Rev. B 12, 1187 (1975).
doi: 10.1103/PhysRevB.12.1187
Baek, S., Sur, Y., Kim, K. H., Vojta, M. & Büchner, B. Interplay of charge density waves, disorder, and superconductivity in 2H-TaSe
doi: 10.1088/1367-2630/ac5eec
Svetin, D. et al. Transitions between photoinduced macroscopic quantum states in 1T-TaS
doi: 10.7567/APEX.7.103201
Ma, Y., Hou, Y., Lu, C., Li, L. & Petrovic, C. Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1T-TaS
doi: 10.1103/PhysRevB.97.195117
Ma, Y., Wu, D. & Wang, Z. The evidence of stacking disorder from dielectric response along the c-axis in the commensurate CDW phase in bulk 1T-TaS
doi: 10.1016/j.ssc.2020.113946
Pilar, P., De Bernardis, D. & Rabl, P. Thermodynamics of ultrastrongly coupled light–matter systems. Quantum 4, 335 (2020).
doi: 10.22331/q-2020-09-28-335
Picardi, M. F., Nimje, K. N. & Papadakis, G. T. Dynamic modulation of thermal emission—a tutorial. J. Appl. Phys. 133, 111101 (2023).
doi: 10.1063/5.0134951
Purcell, E. M., Pound, R. V. & Bloembergen, N. Nuclear magnetic resonance absorption in hydrogen gas. Phys. Rev. 70, 986 (1946).
doi: 10.1103/PhysRev.70.986
Guy, D. R. P., Ghorayeb, A. M., Bayliss, S. C. & Friend, R. H. in Charge Density Waves in Solids Lecture Notes in Physics Vol. 217 (eds Hutiray, G. & Sólyom, J.) 80–83 (Springer, 1985).
Goy, P., Raimond, J. M., Gross, M. & Haroche, S. Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett. 50, 1903–1906 (1983).
doi: 10.1103/PhysRevLett.50.1903
Russell, R. W., Chatelain, M. A., Hecht, J. H. & Stephens, J. R. Si