Cavity-mediated thermal control of metal-to-insulator transition in 1T-TaS


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Oct 2023
Historique:
received: 30 09 2022
accepted: 31 08 2023
medline: 23 10 2023
pubmed: 19 10 2023
entrez: 18 10 2023
Statut: ppublish

Résumé

Placing quantum materials into optical cavities provides a unique platform for controlling quantum cooperative properties of matter, by both weak and strong light-matter coupling

Identifiants

pubmed: 37853152
doi: 10.1038/s41586-023-06596-2
pii: 10.1038/s41586-023-06596-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

487-492

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Garcia-Vidal, F. J., Ciuti, C. & Ebbesen, T. W. Manipulating matter by strong coupling to vacuum fields. Science 373, eabd0336 (2021).
pubmed: 34244383 doi: 10.1126/science.abd0336
Schlawin, F., Kennes, D. M. & Sentef, M. A. Cavity quantum materials. Appl. Phys. Rev. 9, 011312 (2022).
doi: 10.1063/5.0083825
Jarc, G. et al. Tunable cryogenic terahertz cavity for strong light–matter coupling in complex materials. Rev. Sci. Instrum. 93, 033102 (2022).
pubmed: 35365020 doi: 10.1063/5.0080045
Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).
pubmed: 17805291 doi: 10.1038/nature06119
Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).
pubmed: 21233381 doi: 10.1126/science.1197294
Mitrano, M. et al. Possible light-induced superconductivity in K
pubmed: 26855424 pmcid: 4820655 doi: 10.1038/nature16522
Stojchevska, L. et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science 344, 177–180 (2014).
pubmed: 24723607 doi: 10.1126/science.1241591
Giusti, F. et al. Signatures of enhanced superconducting phase coherence in optimally doped Bi
pubmed: 30822056 doi: 10.1103/PhysRevLett.122.067002
Montanaro, A. et al. Anomalous non-equilibrium response in black phosphorus to sub-gap mid-infrared excitation. Nat. Commun. 13, 2667 (2022).
pubmed: 35562345 pmcid: 9106664 doi: 10.1038/s41467-022-30341-4
Schlawin, F., Cavalleri, A. & Jaksch, D. Cavity-mediated electron-photon superconductivity. Phys. Rev. Lett. 122, 133602 (2019).
pubmed: 31012600 doi: 10.1103/PhysRevLett.122.133602
Curtis, J. B., Raines, Z. M., Allocca, A. A., Hafezi, M. & Galitski, V. M. Cavity quantum Eliashberg enhancement of superconductivity. Phys. Rev. Lett. 122, 167002 (2019).
pubmed: 31075022 doi: 10.1103/PhysRevLett.122.167002
Allocca, A. A., Raines, Z. M., Curtis, J. B. & Galitski, V. M. Cavity superconductor-polaritons. Phys. Rev. B 99, 020504(R) (2019).
doi: 10.1103/PhysRevB.99.020504
Laplace, Y., Fernandez-Pena, S., Gariglio, S., Triscone, J. M. & Cavalleri, A. Proposed cavity Josephson plasmonics with complex-oxide heterostructures. Phys. Rev. B 93, 075152 (2016).
doi: 10.1103/PhysRevB.93.075152
Gao, H., Schlawin, F., Buzzi, M., Cavalleri, A. & Jaksch, D. Photoinduced electron pairing in a driven cavity. Phys. Rev. Lett. 125, 053602 (2020).
pubmed: 32794849 doi: 10.1103/PhysRevLett.125.053602
Sentef, M. A., Ruggenthaler, M. & Rubio, A. Cavity quantum-electrodynamical polaritonically enhanced electron-phonon coupling and its influence on superconductivity. Sci. Adv. 4, eaau6969 (2018).
pubmed: 30515456 pmcid: 6269157 doi: 10.1126/sciadv.aau6969
Li, J. & Eckstein, M. Manipulating intertwined orders in solids with quantum light. Phys. Rev. Lett. 125, 217402 (2020).
pubmed: 33275019 doi: 10.1103/PhysRevLett.125.217402
Latini, S., Ronca, E., De Giovannini, U., Hübener, H. & Rubio, A. Cavity control of excitons in two-dimensional materials. Nano Lett. 19, 3473–3479 (2019). 2019.
pubmed: 31046291 pmcid: 6674266 doi: 10.1021/acs.nanolett.9b00183
Ashida, Y. et al. Quantum electrodynamic control of matter: cavity-enhanced ferroelectric phase transition. Phys. Rev. X 10, 041027 (2020).
Latini, S. et al. The ferroelectric photo ground state of SrTiO
pubmed: 34315818 pmcid: 8346861 doi: 10.1073/pnas.2105618118
Lenk, K., Li, J., Werner, P. & Eckstein, M. Dynamical mean-field study of a photon-mediated ferroelectric phase transition. Phys. Rev. B 106, 245124 (2022).
doi: 10.1103/PhysRevB.106.245124
Soykal, Ö. O. & Flatté, E. Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 104, 077202 (2010).
pubmed: 20366911 doi: 10.1103/PhysRevLett.104.077202
Paravicini-Bagliani, G. L. et al. Magneto-transport controlled by Landau polariton states. Nat. Phys. 15, 186–190 (2019).
doi: 10.1038/s41567-018-0346-y
Appugliese, F. et al. Breakdown of topological protection by cavity vacuum fields in the integer quantum Hall effect. Science 375, 1030 (2022).
pubmed: 35239382 doi: 10.1126/science.abl5818
Thomas, A. et al. Large enhancement of ferromagnetism under a collective strong coupling of YBCO nanoparticles. Nano Lett. 21, 4365–4370 (2021).
pubmed: 33945283 pmcid: 8161414 doi: 10.1021/acs.nanolett.1c00973
Vaidyanathan, A. G., Spencer, W. P. & Kleppner, D. Inhibited absorption of blackbody radiation. Phys. Rev. Lett. 47, 1592 (1981).
doi: 10.1103/PhysRevLett.47.1592
Jones, A. C., O’Callahan, B. T., Yang, H. U. & Raschke, M. B. The thermal near-field: coherence, spectroscopy, heat transfer, and optical forces. Prog. Surf. Sci. 88, 349–392 (2013).
doi: 10.1016/j.progsurf.2013.07.001
Roberts, A. S., Chirumamilla, M., Thilsing-Hansen, K., Pedersen, K. & Bozhevolnyi, S. I. Near-infrared tailored thermal emission from wafer-scale continuous-film resonators. Opt. Express 23, A1111–A1119 (2015).
pubmed: 26406741 doi: 10.1364/OE.23.0A1111
Celanovic, I., Perreault, D. & Kassakian, J. Resonant-cavity enhanced thermal emission. Phys. Rev. B 72, 075127 (2005).
doi: 10.1103/PhysRevB.72.075127
Shiue, R.-J. et al. Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity. Nat. Commun. 10, 109 (2019).
pubmed: 30631048 pmcid: 6328560 doi: 10.1038/s41467-018-08047-3
Vaskivskyi, I. et al. Controlling the metal-to-insulator relaxation of the metastable hidden quantum state in 1T-TaS
pubmed: 26601218 pmcid: 4646782 doi: 10.1126/sciadv.1500168
Wang, Y. D. et al. Band insulator to Mott insulator transition in 1T-TaS
pubmed: 32839433 pmcid: 7445232 doi: 10.1038/s41467-020-18040-4
Sipos, B. et al. From Mott state to superconductivity in 1T-TaS
pubmed: 18997775 doi: 10.1038/nmat2318
Nakanishi, K. & Shiba, H. Domain-like incommensurate charge-density-wave states and the first-order incommensurate–commensurate transitions in layered tantalum dichalcogenides. I. 1T-polytype. J. Phys. Soc. Jpn 43, 1839–1847 (1977).
doi: 10.1143/JPSJ.43.1839
Nakanishi, K. & Shiba, H. Domain-like incommensurate charge-density-wave states and collective modes. J. Phys. Soc. Jpn 45, 1147–1156 (1978).
doi: 10.1143/JPSJ.45.1147
Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).
doi: 10.1080/00018737500101391
Burk, B., Thomson, R. E., Clarke, J. & Zettl, A. Surface and bulk charge density wave structure in 1 T-TaS
pubmed: 17832831 doi: 10.1126/science.257.5068.362
Thomson, R. E., Burk, B., Zettl, A. & Clarke, J. Scanning tunneling microscopy of the charge-density-wave structure in 1T-TaS
doi: 10.1103/PhysRevB.49.16899
Tsen, A. W. et al. Structure and control of charge density waves in two-dimensional 1T-TaS
pubmed: 26598707 pmcid: 4679066 doi: 10.1073/pnas.1512092112
Wang, W., Dietzel, D. & Schirmeisen, A. Lattice discontinuities of 1T-TaS
pubmed: 31068601 pmcid: 6506504 doi: 10.1038/s41598-019-43307-2
Gasparov, L. V. et al. Phonon anomaly at the charge ordering transition in 1T-TaS
doi: 10.1103/PhysRevB.66.094301
Dean, N. et al. Polaronic conductivity in the photoinduced phase of 1T-TaS
pubmed: 21231756 doi: 10.1103/PhysRevLett.106.016401
McMillan, W. L. Landau theory of charge-density waves in transition-metal dichalcogenides. Phys. Rev. B 12, 1187 (1975).
doi: 10.1103/PhysRevB.12.1187
Baek, S., Sur, Y., Kim, K. H., Vojta, M. & Büchner, B. Interplay of charge density waves, disorder, and superconductivity in 2H-TaSe
doi: 10.1088/1367-2630/ac5eec
Svetin, D. et al. Transitions between photoinduced macroscopic quantum states in 1T-TaS
doi: 10.7567/APEX.7.103201
Ma, Y., Hou, Y., Lu, C., Li, L. & Petrovic, C. Possible origin of nonlinear conductivity and large dielectric constant in the commensurate charge-density-wave phase of 1T-TaS
doi: 10.1103/PhysRevB.97.195117
Ma, Y., Wu, D. & Wang, Z. The evidence of stacking disorder from dielectric response along the c-axis in the commensurate CDW phase in bulk 1T-TaS
doi: 10.1016/j.ssc.2020.113946
Pilar, P., De Bernardis, D. & Rabl, P. Thermodynamics of ultrastrongly coupled light–matter systems. Quantum 4, 335 (2020).
doi: 10.22331/q-2020-09-28-335
Picardi, M. F., Nimje, K. N. & Papadakis, G. T. Dynamic modulation of thermal emission—a tutorial. J. Appl. Phys. 133, 111101 (2023).
doi: 10.1063/5.0134951
Purcell, E. M., Pound, R. V. & Bloembergen, N. Nuclear magnetic resonance absorption in hydrogen gas. Phys. Rev. 70, 986 (1946).
doi: 10.1103/PhysRev.70.986
Guy, D. R. P., Ghorayeb, A. M., Bayliss, S. C. & Friend, R. H. in Charge Density Waves in Solids Lecture Notes in Physics Vol. 217 (eds Hutiray, G. & Sólyom, J.) 80–83 (Springer, 1985).
Goy, P., Raimond, J. M., Gross, M. & Haroche, S. Observation of cavity-enhanced single-atom spontaneous emission. Phys. Rev. Lett. 50, 1903–1906 (1983).
doi: 10.1103/PhysRevLett.50.1903
Russell, R. W., Chatelain, M. A., Hecht, J. H. & Stephens, J. R. Si

Auteurs

Giacomo Jarc (G)

Department of Physics, Università degli Studi di Trieste, Trieste, Italy.
Elettra Sincrotrone Trieste, Trieste, Italy.

Shahla Yasmin Mathengattil (SY)

Department of Physics, Università degli Studi di Trieste, Trieste, Italy.
Elettra Sincrotrone Trieste, Trieste, Italy.

Angela Montanaro (A)

Department of Physics, Università degli Studi di Trieste, Trieste, Italy.
Elettra Sincrotrone Trieste, Trieste, Italy.
Department of Physics, University of Erlangen-Nürnberg, Erlangen, Germany.

Francesca Giusti (F)

Department of Physics, Università degli Studi di Trieste, Trieste, Italy.
Elettra Sincrotrone Trieste, Trieste, Italy.

Enrico Maria Rigoni (EM)

Department of Physics, Università degli Studi di Trieste, Trieste, Italy.
Elettra Sincrotrone Trieste, Trieste, Italy.

Rudi Sergo (R)

Elettra Sincrotrone Trieste, Trieste, Italy.

Francesca Fassioli (F)

Department of Physics, University of Erlangen-Nürnberg, Erlangen, Germany.
International School for Advanced Studies (SISSA), Trieste, Italy.

Stephan Winnerl (S)

Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.

Simone Dal Zilio (S)

CNR-IOM, TASC Laboratory, Trieste, Italy.

Dragan Mihailovic (D)

Jožef Stefan Institute, Ljubljana, Slovenia.

Peter Prelovšek (P)

Jožef Stefan Institute, Ljubljana, Slovenia.

Martin Eckstein (M)

Institute of Theoretical Physics, University of Hamburg, Hamburg, Germany.

Daniele Fausti (D)

Department of Physics, Università degli Studi di Trieste, Trieste, Italy. daniele.fausti@elettra.eu.
Elettra Sincrotrone Trieste, Trieste, Italy. daniele.fausti@elettra.eu.
Department of Physics, University of Erlangen-Nürnberg, Erlangen, Germany. daniele.fausti@elettra.eu.

Classifications MeSH