Stability of non-Newtonian nanofluid movement with heat/mass transportation passed through a hydro magnetic elongating/contracting sheet: multiple branches solutions.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
18 Oct 2023
Historique:
received: 04 09 2023
accepted: 11 10 2023
medline: 19 10 2023
pubmed: 19 10 2023
entrez: 18 10 2023
Statut: epublish

Résumé

Nanomaterials have found wide applications in many fields, leading to significant interest in the scientific world, in particular automobile thermal control, heat reservoirs, freezers, hybrid control machines, paper creation, cooling organisms, etc. The aim of the present study is to investigate the MHD non-Newtonian nanofluid and time-based stability analysis to verify the stable branch by computing the smallest eigenvalue across a slendering, extending, or shrinking sheet with thermal radiation and chemical reactions. The basic flow equations have been obtained in terms of PDEs, which are then converted to ODEs in dimensionless form via a suitable transformation. Based on the MATLAB software package bvp4c, the numerical solution has been obtained for the system of equations. A comparative study of the present and published work is impressive. The influence of evolving factors such as Prandtl number, Schmidt number, magnetic factor, heat generation/absorption, thermal, thermophoresis factor, chemical factor, second-grade fluid factor, and Brownian number on the velocities, energy, and concentration patterns is discussed through graphs. It is perceived that the temperature distribution enriches owing to the greater magnitude of the heat source. Furthermore, it is observed that a greater magnitude of radiation improves the temperature curves. It is also investigated from the present analysis that concentration and temperature profiles increase due to the growing values of the thermophoresis factor.

Identifiants

pubmed: 37853182
doi: 10.1038/s41598-023-44640-3
pii: 10.1038/s41598-023-44640-3
pmc: PMC10584946
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

17760

Informations de copyright

© 2023. Springer Nature Limited.

Références

S.U. Choi & J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF951135–29). (Argonne National Lab., 1995).
J. Buongiorno, Convective transport in NFs, (2006).
Akram, S., Athar, M., Saeed, K. & Razia, A. Crossbreed impact of double-diffusivity convection on peristaltic pumping of magneto Sisko nanofluids in non-uniform inclined channel: A bio-nanoengineering model. Sci. Prog. 104(3), 00368504211033677 (2021).
doi: 10.1177/00368504211033677 pubmed: 34293964 pmcid: 10450713
Hafeez, A., Khan, M. & Ahmed, J. Stagnation point flow of radiative Oldroyd-B nanofluid over a rotating disk. Comp. Meth. Prog. Biomed. 191, 105342. https://doi.org/10.1016/j.cmpb.2020.105342 (2020).
doi: 10.1016/j.cmpb.2020.105342
Ali Lund, L., Ching, D. L., Omar, Z., Khan, I. & Nisar, K. S. Triple local similarity solutions of darcy-forchheimer magnetohydrodynamic (MHD) flow of micropolar nanofluid over an exponential shrinking surface: Stability analysis. Coat 9(8), 527. https://doi.org/10.3390/coatings9080527 (2019).
doi: 10.3390/coatings9080527
Lund, L. A., Omar, Z., Raza, J. & Khan, I. Magnetohydrodynamic flow of Cu–Fe
doi: 10.1007/s10973-020-09602-1
Dero, S., Rohni, A. M., Saaban, A. & Khan, I. Dual solutions and stability analysis of micropolar nanofluid flow with slip effect on stretching/shrinking surfaces. Ener 12(23), 4529. https://doi.org/10.3390/en12234529 (2019).
doi: 10.3390/en12234529
Dero, S., Rohni, A. M. & Saaban, A. Stability analysis of Cu–C
Ramezanizadeh, M., Nazari, M. A., Ahmadi, M. H., Lorenzini, G. & Pop, I. A review on the applications of intelligence methods in predicting thermal conductivity of nanofluids. J. Therm. Anal. Calorim. 138(1), 827–843. https://doi.org/10.1016/j.solener.2021.08.051 (2019).
doi: 10.1016/j.solener.2021.08.051
Akram, S. & Razia, A. Hybrid effects of thermal and concentration convection on peristaltic flow of fourth grade nanofluids in an inclined tapered channel: Applications of double-diffusivity. Comput. Model. Eng. Sci. 127(3), 901–922. https://doi.org/10.32604/cmes.2021.014469 (2021).
doi: 10.32604/cmes.2021.014469
Nazari, M. A. et al. A review of nanomaterial incorporated phase change materials for solar thermal energy storage. Sol. Energy https://doi.org/10.1016/j.solener.2021.08.051 (2021).
doi: 10.1016/j.solener.2021.08.051
Akram, S., Athar, M. & Saeed, K. Hybrid impact of thermal and concentration convection on peristaltic pumping of Prandtl nanofluids in non-uniform inclined channel and magnetic field. Case Stud. Therm. Eng. 25, 100965. https://doi.org/10.1016/j.csite.2021.100965 (2021).
doi: 10.1016/j.csite.2021.100965
Afzal, Q., Akram, S., Ellahi, R., Sait, S. M. & Chaudhry, F. Thermal and concentration convection in nanofluids for peristaltic flow of magneto couple stress fluid in a nonuniform channel. J. Therm. Anal. Calorim. 144(6), 2203–2218 (2021).
doi: 10.1007/s10973-020-10340-7
Aman, F., Ishak, A. & Pop, I. Magnetohydrodynamic stagnation-point flow towards a stretching/shrinking sheet with slip effects. Int. Commun. Heat Mass Transf. 47, 68–72. https://doi.org/10.1016/j.icheatmasstransfer.2013.06.005 (2013).
doi: 10.1016/j.icheatmasstransfer.2013.06.005
Mabood, F., Khan, W. A. & Ismail, A. I. M. MHD boundary layer flow and heat transfer of nanofluids over a nonlinear stretching sheet: A numerical study. J. Magn. Magn. Mater. 374, 569–576. https://doi.org/10.1016/j.jmmm.2014.09.013 (2015).
doi: 10.1016/j.jmmm.2014.09.013
Qureshi, M. Z. A. et al. Morphological monolayer impact on hybrid nanofluid flow due to dispersion of polymer/CNT matrix nanocomposite material. Aims Math. 8(1), 633–656 (2023).
doi: 10.3934/math.2023030
Rauf, A., Shah, N. A., Mushtaq, A. & Mart, T. Heta transfer and magnetohydrodynamic hybrid micropolar ferrofluid over a nonlinear stretching sheet. AIMS Math. 8(1), 164–193 (2023).
doi: 10.3934/math.2023008
Oreyeni, T., Shah, N. A., Pepoola, A. O., Elzahar, E. E. & Yook, S. J. The significance of exponential base heat generation on variable thermophysical properties on the dynamics of Casson fluid over a stratified surface with non-uniform thickness. Waves Random Complex Media https://doi.org/10.1080/17455030.2022.2119304 (2023).
doi: 10.1080/17455030.2022.2119304
Zeeshan, Khan, M. S., Khan, I., Eldin, S. M. & Hira,. Numerical solution of heat and mass transfer using buongionro nanofluid model through a porous stretching sheet impact of variable magnetic, heat source, and temperature conductivity. Sci. Prog. 106(3), 003685042 (2023).
doi: 10.1177/00368504231201542
Zeeshan, Ahammad, N. A., Ameer, N., Shah, N. A. & Chung, J. D. Role of nanofluid and hybrid nanofluid for enhancing thermal conductivity towards exponentially stretching curve with modified Fourier law inspired by melting heat effect. Mathematics (2227-7390) 11(5), 1170 (2023).
Raza, J. Thermal radiation and slip effects on magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a convective stretching sheet. Propuls. Power Res. 8, 138–146. https://doi.org/10.1016/j.jppr.2019.01.004 (2019).
doi: 10.1016/j.jppr.2019.01.004
Zeeshan, Khan, I., Eldin, S. M., Islam, S. & Uzair Khan, M. Two-dimensional nanofluid flow impinging on a porous stretching sheet with nonlinear thermal radiation and slip effect at the boundary enclosing energy perspective. Sci. Rep. 13(1), 5459 (2023).
doi: 10.1038/s41598-023-32650-0 pubmed: 37016068 pmcid: 10073217
Cortell, R. Viscous flow and heat transfer over a nonlinearly stretching sheet. Appl. Math. Comput. 184, 864–873. https://doi.org/10.1016/j.amc.2006.06.077 (2007).
doi: 10.1016/j.amc.2006.06.077
Cortell, R. Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet. Phys. Lett. A 372, 631–636. https://doi.org/10.1016/j.physleta.2007.08.005 (2008).
doi: 10.1016/j.physleta.2007.08.005
Bachok, N. & Ishak, A. Similarity solutions for the stagnation-point flow and heat transfer over a nonlinearly stretching/shrinking sheet. Sains Malays`. 40, 1297–1300 (2011).
Fauzi, N. F., Ahmad, S. & Pop, I. Stagnation point flow and heat transfer over a nonlinear shrinking sheet with slip effects. Alex. Eng. J. 54, 929–934. https://doi.org/10.1016/j.aej.2015.08.004 (2015).
doi: 10.1016/j.aej.2015.08.004
Hayat, T., Aziz, A., Muhammad, T. & Alsaedi, A. On magnetohydrodynamic threedimensional flow of nanofluid over a convectively heated nonlinear stretching surface. Int. J. Heat Mass Transf. 100, 566–572. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.113 (2016).
doi: 10.1016/j.ijheatmasstransfer.2016.04.113
Gayatri, M., Jayarami Reddy, K. & Jayachandra Babu, M. Slip flow of Carreau fluid over a slendering stretching sheet with viscous dissipation and Joule heating. SN Appl. Sci. 2(3), 1–11 (2020).
doi: 10.1007/s42452-020-2262-x
Pal, D. & Mandal, G. Double diffusive magnetohydrodynamic heat and mass transfer of nanofluids over a nonlinear stretching/shrinking sheet with viscous-Ohmic dissipation and thermal radiation. Propuls. Power Res. 6, 58–69. https://doi.org/10.1016/j.jppr.2017.01.003 (2017).
doi: 10.1016/j.jppr.2017.01.003
Rana, P., Dhanai, R. & Kumar, L. Radiative nanofluid flow and heat transfer over a non-linear permeable sheet with slip conditions and variable magnetic field: Dual solutions. Ain Shams Eng. J. 8, 341–352. https://doi.org/10.1016/j.asej.2015.08.016 (2017).
doi: 10.1016/j.asej.2015.08.016
Merkin, J. H. On dual solutions occurring in mixed convection in a porous medium. J. Eng. Math. 20, 171–179. https://doi.org/10.1007/BF00042775 (1985).
doi: 10.1007/BF00042775
Weidman, P. D., Kubitschek, D. G. & Davis, A. M. J. The effect of transpiration on selfsimilar boundary layer flow over moving surfaces. Int. J. Eng. Sci. 44, 730–737. https://doi.org/10.1016/j.ijengsci.2006.04.005 (2006).
doi: 10.1016/j.ijengsci.2006.04.005
Merrill, K., Beauchesne, M., Previte, J., Paullet, J. & Weidman, P. Final steady flow near a stagnation point on a vertical surface in a porous medium. Int. J. Heat Mass Transf. 49, 4681–4686. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.056 (2006).
doi: 10.1016/j.ijheatmasstransfer.2006.02.056
Harris, S. D., Ingham, D. B. & Pop, I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: brinkman model with slip, Transport Porous. Media 77, 267–285. https://doi.org/10.1007/s11242-008-9309-6 (2009).
doi: 10.1007/s11242-008-9309-6
Naganthran, K., Nazar, R. & Pop, I. Effects of thermal radiation on mixed convection flow over a permeable vertical shrinking flat plate in an Oldroyd-b fluid. Sains Malays. 47, 1069–1076 (2018).
doi: 10.17576/jsm-2018-4705-25
Bakar, N. A. A., Bachok, N., Arifin, N. M. & Pop, I. Stability analysis on the flow and heat transfer of nanofluid past a stretching/shrinking cylinder with suct ion effect. Results Phys. 9, 1335–1344. https://doi.org/10.1016/j.rinp.2018.04.056 (2018).
doi: 10.1016/j.rinp.2018.04.056
Zainal, N. A., Nazar, R., Naganthran, K. & Pop, I. Heat generation/ absorption effect on MHD flow of hybrid nanofluid over bidirectional exponential stretching/shrinking sheet. Chin. J. Phys. 69, 118–133 (2021).
doi: 10.1016/j.cjph.2020.12.002
Hayat, T. & Nadeem, S. Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys. 7, 2317–2324 (2017).
doi: 10.1016/j.rinp.2017.06.034
Jamaludin, A., Naganthran, K., Nazar, R. & Pop, I. MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink. Euro. J. Mech. B/Fluids 84, 71–80 (2020).
doi: 10.1016/j.euromechflu.2020.05.017
Othman, M. N., Jedi, A. & Bakar, N. A. A. MHD flow and heat transfer of hybrid nanofluid over an exponentially shrinking surface with heat source/sink. Appl. Sci. 11(17), 8199 (2021).
doi: 10.3390/app11178199
Wahid, N. S., Arifin, N. M., Khashi’ie, N. S. & Pop, I. Hybrid nanofluid slip flow over an exponentially stretching/shrinking permeable sheet with heat generation. Mathematics 9(1), 30 (2020).
doi: 10.3390/math9010030
Li, Y.-X. et al. Dual branch solutions (multi-solutions) for nonlinear radiative Falkner-Skan flow of Maxwell nanomaterials with heat and mass transfer over a static/moving wedge. Int. J. Modern Phys C 32(10), 2150130 (2021).
doi: 10.1142/S0129183121501308
Madhukesh, J. K., Ramesh, G. K., Shehzad, S. A., Chapi, S. & Kushalappa, I. P. Thermal transport of MHD Casson–Maxwell nanofluid between two porous disks with Cattaneo–Christov theory. Numer. Heat Transf. Part A Appl. https://doi.org/10.1080/10407782.2023.2214322 (2023).
doi: 10.1080/10407782.2023.2214322
Nagaraja, K. V. et al. Heat and mass transfer analysis of assisting and opposing radiative flow conveying ternary hybrid nanofluid over an exponentially stretching surface. Sci. Rep. 13(1), 14795 (2023).
doi: 10.1038/s41598-023-41916-6 pubmed: 37684341 pmcid: 10491622
Madhukesh, J. K. et al. Analysis of buoyancy assisting and opposing flows of colloidal mixture of titanium oxide, silver, and aluminium oxide nanoparticles with water due to exponentially stretchable surface. Arab. J. Chem. 16(4), 104550 (2023).
doi: 10.1016/j.arabjc.2023.104550
Ramesh, G. K., Madhukesh, J. K., Khan, U., Hussain, S. M. & Galal, A. M. Inspection of hybrid nanoparticles flow across a nonlinear/linear stretching surface when heat sink/source and thermophoresis particle deposition impacts are significant. Int. J. Modern Phys. B 37(01), 2350008 (2023).
doi: 10.1142/S021797922350008X
Waqas, H., Hasan, M. J., Majeed, A. H., Liu, D. & Muhammad, T. Hydrothermal characteristics, entropy and kinetic energy investigation in a sinusoidal cavity for variable wavelengths and solid volume fraction using Cu-water nanofluid. J. Mol. Liq. 389, 122911 (2023).
doi: 10.1016/j.molliq.2023.122911
Waqas, H. et al. Numerical computation of Brownian motion and thermophoresis effects on rotational micropolar nanomaterials with activation energy. Propuls. Power Res. https://doi.org/10.1016/j.jppr.2023.05.005 (2023).
doi: 10.1016/j.jppr.2023.05.005
Waqas, H. et al. Galerkin finite element analysis for buoyancy driven copper-water nanofluid flow and heat transfer through fins enclosed inside a horizontal annulus: Applications to thermal engineering. Case Stud. Therm. Eng. 40, 102540 (2022).
doi: 10.1016/j.csite.2022.102540
Waqas, H. et al. Comparative analysis of hybrid nanofluids with Cattaneo-Christov heat flux model: A thermal case study. Case Stud. Therm. Eng. 36, 102212 (2022).
doi: 10.1016/j.csite.2022.102212
Shu-Bo, C. et al. Thermophoretic particle deposition in the flow of dual stratified Casson fluid with magnetic dipole and generalized Fourier’s and Fick’s laws. Case Stud. Therm. Eng. 26, 101186 (2021).
doi: 10.1016/j.csite.2021.101186
Muhammad, R. et al. Model-based comparison of hybrid nanofluid Darcy-Forchheimer flow subject to quadratic convection and frictional heating with multiple slip conditions. Numer. Heat Transf. Part A Appl. https://doi.org/10.1080/10407782.2023.2231631 (2023).
doi: 10.1080/10407782.2023.2231631
Jawad, A., Ramzan, M., Saleel, C. A., Kadry, S. & Saeed, A. M. (2023) Significance of Hall current and Ion slip in a three-dimensional Maxwell nanofluid flow over rotating disk with variable characteristics and gyrotactic microorganisms. Numer. Heat Transf. Part B Fundam. https://doi.org/10.1080/10407790.2023.2252597 (2023).
doi: 10.1080/10407790.2023.2252597
Muhammad, R. et al. Impact of Newtonian heating and Fourier and Fick’s laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder. Sci. Rep. 11(1), 2357 (2021).
doi: 10.1038/s41598-021-81747-x
Ramzan, M., Shaheen, N., Ghazwani, H. A. S., Nisar, K. S. & Saleel, C. A. Impact of higher-order chemical reaction with generalized Fourier and Fick law on a Maxwell nanofluid flow past a rotating cone with variable thermal conductivity. Int. J. Modern Phys. B 37(07), 2350062 (2023).
doi: 10.1142/S0217979223500625

Auteurs

Humaira Yasmin (H)

Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, 31982, Al-Ahsa, Saudi Arabia. hhassain@kfu.edu.sa.

Azzh Saad Alshehry (AS)

Department of Mathematical Sciences, Faculty of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.
Department of Mathematics and Statistics, Bacha Khan University Charsadda, Charsadda, KP, Pakistan. zeeshansuit@gmail.com.

Abdul Hamid Ghanie (AH)

Basic Science Department, College of Science and Theoretical Studies, Saudi Electronic University, 11673, Riyadh, Saudi Arabia.

Rasool Shah (R)

Department of Mathematics, Abdul Wali Khan University Mardan, Mardan, KP, Pakistan.

Classifications MeSH