Association of low pregnancy associated plasma protein-A with increased umbilical artery pulsatility index, in cases of fetal weight between the 3rd and 10th percentiles: a retrospective cohort study.

Doppler ultrasound constitutionally small fetuses fetal growth restriction pregnancy associated plasma protein-A small for gestational age umbilical artery Doppler

Journal

Journal of perinatal medicine
ISSN: 1619-3997
Titre abrégé: J Perinat Med
Pays: Germany
ID NLM: 0361031

Informations de publication

Date de publication:
20 Oct 2023
Historique:
received: 14 04 2023
accepted: 04 09 2023
medline: 19 10 2023
pubmed: 19 10 2023
entrez: 19 10 2023
Statut: aheadofprint

Résumé

This study aims to evaluate if low levels of serum maternal pregnancy associated plasma protein-A (PAPP-A) during the first trimester are related to increased umbilical artery pulsatility index (UA PI) later in pregnancy, in cases of estimated fetal weight between the 3rd and 10th percentiles, in order to establish PAPP-A as a predictor of this particular cases of fetal growth restriction (FGR). An observational, retrospective cohort study, conducted at a tertiary University Hospital located in Oporto, Portugal. Pregnant women who did the first trimester combined screening, between May 2013 and June 2020 and gave birth in the same hospital, with an estimated fetal weight (EFW) between the 3rd and 10th percentiles were included. The primary outcome is the difference in increased UA PI prevalence between two groups: PAPP-A<0.45 MoM and PAPP-A≥0.45 MoM. As secondary outcomes were evaluated differences in neonatal weight, gestational age at delivery, cesarean delivery, neonatal intensive care unit hospitalization, 5-min Apgar score below 7 and live birth rate between the same two groups. We included 664 pregnancies: 110 cases of PAPP-A<0.45 MoM and 554 cases with PAPP-A≥0.45 MoM. Increased UA PI prevalence, which was the primary outcome of this study, was significantly different between the two groups (p=0.005), as the PAPP-A<0.45 MoM group presents a higher prevalence (12.7 %) when compared to the PAPP-A≥0.45 MoM group (5.4 %). The secondary outcome cesarean delivery rate was significantly different between the groups (p=0.014), as the PAPP-A<0.45 MoM group presents a higher prevalence (42.7 %) than the PAPP-A≥0.45 MoM group (30.1 %). No other secondary outcomes showed differences between the two groups. There is an association of low serum maternal PAPP-A (<0.45 MoM) during the first trimester and increased UA PI (>95th percentile) later in pregnancy, in cases of EFW between the 3rd and 10th percentiles. However, this association is not strong enough alone for low PAPP-A to be a reliable predictor of increased UA PI in this population.

Identifiants

pubmed: 37853809
pii: jpm-2023-0156
doi: 10.1515/jpm-2023-0156
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023 Walter de Gruyter GmbH, Berlin/Boston.

Références

Gordijn, SJ, Beune, IM, Thilaganathan, B, Papageorghiou, A, Baschat, AA, Baker, PN, et al.. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol 2016;48:333–9. https://doi.org/10.1002/uog.15884 .
doi: 10.1002/uog.15884
Nardozza, LM, Caetano, AC, Zamarian, AC, Mazzola, JB, Silva, CP, Marçal, VM, et al.. Fetal growth restriction: current knowledge. Arch Gynecol Obstet 2017;295:1061–77. https://doi.org/10.1007/s00404-017-4341-9 .
doi: 10.1007/s00404-017-4341-9
von Beckerath, AK, Kollmann, M, Rotky-Fast, C, Karpf, E, Lang, U, Klaritsch, P. Perinatal complications and long-term neurodevelopmental outcome of infants with intrauterine growth restriction. Am J Obstet Gynecol 2013;208:130.e1–6. https://doi.org/10.1016/j.ajog.2012.11.014 .
doi: 10.1016/j.ajog.2012.11.014
Longo, S, Bollani, L, Decembrino, L, Di Comite, A, Angelini, M, Stronati, M. Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J Matern Fetal Neonatal Med 2013;26:222–5. https://doi.org/10.3109/14767058.2012.715006 .
doi: 10.3109/14767058.2012.715006
Emil, S, Nguyen, T, Sills, J, Padilla, G. Meconium obstruction in extremely low-birth-weight neonates: guidelines for diagnosis and management. J Pediatr Surg 2004;39:731–7. https://doi.org/10.1016/j.jpedsurg.2004.01.027 .
doi: 10.1016/j.jpedsurg.2004.01.027
Damhuis, SE, Ganzevoort, W, Gordijn, SJ. Abnormal fetal growth: small for gestational age, fetal growth restriction, large for gestational age: definitions and epidemiology. Obstet Gynecol Clin N Am 2021;48:267–79. https://doi.org/10.1016/j.ogc.2021.02.002 .
doi: 10.1016/j.ogc.2021.02.002
Resnik, R. Intrauterine growth restriction. Obstet Gynecol 2002;99:490–6. https://doi.org/10.1016/s0029-7844(01)01780-x .
doi: 10.1016/s0029-7844(01)01780-x
Burton, GJ, Jauniaux, E. Pathophysiology of placental-derived fetal growth restriction. Am J Obstet Gynecol 2018;218:S745–61. https://doi.org/10.1016/j.ajog.2017.11.577 .
doi: 10.1016/j.ajog.2017.11.577
Albrecht, ED, Pepe, GJ. Regulation of uterine spiral artery remodeling: a review. Reprod Sci 2020;27:1932–42. https://doi.org/10.1007/s43032-020-00212-8 .
doi: 10.1007/s43032-020-00212-8
Mayhew, TM, Manwani, R, Ohadike, C, Wijesekara, J, Baker, PN. The placenta in pre-eclampsia and intrauterine growth restriction: studies on exchange surface areas, diffusion distances and villous membrane diffusive conductances. Placenta 2007;28:233–8. https://doi.org/10.1016/j.placenta.2006.02.011 .
doi: 10.1016/j.placenta.2006.02.011
Audette, MC, Kingdom, JC. Screening for fetal growth restriction and placental insufficiency. Semin Fetal Neonatal Med 2018;23:119–25. https://doi.org/10.1016/j.siny.2017.11.004 .
doi: 10.1016/j.siny.2017.11.004
Ornelas, M, Ramalho, C. Pregnancy-associated plasma protein A as a fetal growth restriction marker: what do we know so far? Acta Obstet Gynecol Scand 2018;12:204–2013.
McCowan, L, Horgan, RP. Risk factors for small for gestational age infants. Best Pract Res Clin Obstet Gynaecol 2009;23:779–93. https://doi.org/10.1016/j.bpobgyn.2009.06.003 .
doi: 10.1016/j.bpobgyn.2009.06.003
Unterscheider, J, Daly, S, Geary, MP, Kennelly, MM, McAuliffe, FM, O’Donoghue, K, et al.. Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO Study. Am J Obstet Gynecol 2013;208:290.e1–6. https://doi.org/10.1016/j.ajog.2013.02.007 .
doi: 10.1016/j.ajog.2013.02.007
Chou, JH, Roumiantsev, S, Singh, R. PediTools electronic growth chart calculators: applications in clinical care, research, and quality improvement. J Med Internet Res 2020;22:e16204. https://doi.org/10.2196/16204 .
doi: 10.2196/16204
Nuno Montenegro, TR, Ramalho, C, de Campos, DA. Protocolos em medicina materno-fetal . Lisbon: LIDEL; 2014:296 p.
Proctor, LK, Toal, M, Keating, S, Chitayat, D, Okun, N, Windrim, RC, et al.. Placental size and the prediction of severe early-onset intrauterine growth restriction in women with low pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol 2009;34:274–82. https://doi.org/10.1002/uog.7308 .
doi: 10.1002/uog.7308
Ciobanu, A, Wright, A, Syngelaki, A, Wright, D, Akolekar, R, Nicolaides, KH. Fetal Medicine Foundation reference ranges for umbilical artery and middle cerebral artery pulsatility index and cerebroplacental ratio. Ultrasound Obstet Gynecol 2019;53:465–72. https://doi.org/10.1002/uog.20157 .
doi: 10.1002/uog.20157
Hadlock, FP, Harrist, RB, Carpenter, RJ, Deter, RL, Park, SK. Sonographic estimation of fetal weight. The value of femur length in addition to head and abdomen measurements. Radiology 1984;150:535–40. https://doi.org/10.1148/radiology.150.2.6691115 .
doi: 10.1148/radiology.150.2.6691115
Organization, WH. WHO child growth standards: methods and development . Geneva: World Health Organization; 2006.
Bujold, E, Roberge, S, Lacasse, Y, Bureau, M, Audibert, F, Marcoux, S, et al.. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet Gynecol 2010;116:402–14. https://doi.org/10.1097/aog.0b013e3181e9322a .
doi: 10.1097/aog.0b013e3181e9322a
Savchev, S, Figueras, F, Cruz-Martinez, R, Illa, M, Botet, F, Gratacos, E. Estimated weight centile as a predictor of perinatal outcome in small-for-gestational-age pregnancies with normal fetal and maternal Doppler indices. Ultrasound Obstet Gynecol 2012;39:299–303. https://doi.org/10.1002/uog.10150 .
doi: 10.1002/uog.10150
O’Dwyer, V, Burke, G, Unterscheider, J, Daly, S, Geary, MP, Kennelly, MM, et al.. Defining the residual risk of adverse perinatal outcome in growth-restricted fetuses with normal umbilical artery blood flow. Am J Obstet Gynecol 2014;211:420.e1–5. https://doi.org/10.1016/j.ajog.2014.07.033 .
doi: 10.1016/j.ajog.2014.07.033
Direção-Geral-da-Saúde . Exames Ecográficos na Gravidez de baixo risco – norma no 023/2011 ; 2011. Available from: https://normas.dgs.min-saude.pt/2011/09/29/exames-ecograficos-na-gravidez/ .
Sonek, JD, Nicolaides, KH, Janku, P. Screening at 11–13+6 weeks’ gestation. Ceska Gynekol 2012;77:92–104.
Mifsud, W, Sebire, NJ. Placental pathology in early-onset and late-onset fetal growth restriction. Fetal Diagn Ther 2014;36:117–28. https://doi.org/10.1159/000359969 .
doi: 10.1159/000359969
Benton, SJ, Hu, Y, Xie, F, Kupfer, K, Lee, SW, Magee, LA, et al.. Can placental growth factor in maternal circulation identify fetuses with placental intrauterine growth restriction? Am J Obstet Gynecol 2012;206:163.e1–7. https://doi.org/10.1016/j.ajog.2011.09.019 .
doi: 10.1016/j.ajog.2011.09.019
Hansen, YB, Myrhøj, V, Jørgensen, FS, Oxvig, C, Sørensen, S. First trimester PAPP-A2, PAPP-A and hCGβ in small-for-gestational-age pregnancies. Clin Chem Lab Med 2016;54:117–23. https://doi.org/10.1515/cclm-2015-0230 .
doi: 10.1515/cclm-2015-0230
Goetzinger, KR, Singla, A, Gerkowicz, S, Dicke, JM, Gray, DL, Odibo, AO. The efficiency of first-trimester serum analytes and maternal characteristics in predicting fetal growth disorders. Am J Obstet Gynecol 2009;201:412.e1–6. https://doi.org/10.1016/j.ajog.2009.07.016 .
doi: 10.1016/j.ajog.2009.07.016
Gundu, S, Kulkarni, M, Gupte, S, Gupte, A, Gambhir, M, Gambhir, P. Correlation of first-trimester serum levels of pregnancy-associated plasma protein A with small-for-gestational-age neonates and preterm births. Int J Gynaecol Obstet 2016;133:159–63. https://doi.org/10.1016/j.ijgo.2015.09.022 .
doi: 10.1016/j.ijgo.2015.09.022
Cignini, P, Maggio Savasta, L, Gulino, FA, Vitale, SG, Mangiafico, L, Mesoraca, A, et al.. Predictive value of pregnancy-associated plasma protein-A (PAPP-A) and free beta-hCG on fetal growth restriction: results of a prospective study. Arch Gynecol Obstet 2016;293:1227–33. https://doi.org/10.1007/s00404-015-3947-z .
doi: 10.1007/s00404-015-3947-z
Karagiannis, G, Akolekar, R, Sarquis, R, Wright, D, Nicolaides, KH. Prediction of small-for-gestation neonates from biophysical and biochemical markers at 11–13 weeks. Fetal Diagn Ther 2011;29:148–54. https://doi.org/10.1159/000321694 .
doi: 10.1159/000321694
Litwińska, E, Litwińska, M, Oszukowski, P, Szaflik, K, Kaczmarek, P. Combined screening for early and late pre-eclampsia and intrauterine growth restriction by maternal history, uterine artery Doppler, mean arterial pressure and biochemical markers. Adv Clin Exp Med 2017;26:439–48. https://doi.org/10.17219/acem/62214 .
doi: 10.17219/acem/62214

Auteurs

Carolina Dias da Silva (C)

Faculdade de Medicina da Universidade do Porto, Porto, Portugal.

Inês Sarmento Gonçalves (I)

Department of Gynecology-Obstetrics and Pediatrics, Faculty of Medicine, University of Porto, Porto, Portugal.
Department of Obstetrics and Ginecology, Unidade Local de Saúde de Matosinhos, Matosinhos, Portugal.

Carla Ramalho (C)

Department of Gynecology-Obstetrics and Pediatrics, Faculty of Medicine, University of Porto, Porto, Portugal.
Department of Obstetrics, Centro Hospitalar Universitário de São João, Porto, Portugal.
Instituto de Investigação e Inovação em Saúde, i3S, Universidade do Porto Porto, Portugal.

Classifications MeSH