Ag-lignin hybrid nanoparticles for high-performance solar absorption in photothermal antibacterial chitosan films.
Biomass
Biotechnology
Materials chemistry
Materials science
Journal
iScience
ISSN: 2589-0042
Titre abrégé: iScience
Pays: United States
ID NLM: 101724038
Informations de publication
Date de publication:
20 Oct 2023
20 Oct 2023
Historique:
received:
19
07
2023
revised:
06
09
2023
accepted:
22
09
2023
medline:
19
10
2023
pubmed:
19
10
2023
entrez:
19
10
2023
Statut:
epublish
Résumé
There is an urgent need for antimicrobial films based on sustainable resources and production methods. In this study, we present a bio-based nanocomposite film composed of chitosan (∼60 wt %), lignin nanoparticles (LNPs, ∼40 wt %), a small amount of glutaraldehyde (1.5 wt %), and a trace level of silver nanoparticles (AgNPs, 0.072 wt %). The uniform dispersion with LNPs prevented aggregation of metallic silver, resulting in small (diameter 3.3 nm) AgNPs. The nanocomposite film absorbs 89% of radiation across the entire solar spectrum and exhibits a remarkable photothermally triggered antibacterial effect, which is further enhanced by the dark color of lignin. Under simulated solar light illumination, the nanocomposite films demonstrated a significant reduction in viable
Identifiants
pubmed: 37854692
doi: 10.1016/j.isci.2023.108058
pii: S2589-0042(23)02135-1
pmc: PMC10579425
doi:
Types de publication
Journal Article
Langues
eng
Pagination
108058Informations de copyright
© 2023 The Authors.
Déclaration de conflit d'intérêts
The authors declare no competing interests.
Références
Nanomedicine. 2012 Jan;8(1):37-45
pubmed: 21703988
Nanomedicine. 2007 Mar;3(1):95-101
pubmed: 17379174
ACS Appl Mater Interfaces. 2022 Mar 16;14(10):12693-12702
pubmed: 35230795
Mikrochim Acta. 2019 Oct 27;186(11):727
pubmed: 31655902
J Mater Chem B. 2015 Feb 21;3(7):1371-1378
pubmed: 32264488
Environ Sci Technol. 2010 Jul 15;44(14):5649-54
pubmed: 20583805
Small. 2014 Jan 15;10(1):169-178
pubmed: 23847147
Biomacromolecules. 2022 Nov 14;23(11):4597-4606
pubmed: 36237172
Environ Sci Technol. 2020 Mar 17;54(6):3691-3701
pubmed: 32100998
Foods. 2021 Jun 01;10(6):
pubmed: 34205937
ACS Appl Bio Mater. 2022 Dec 19;5(12):5943-5952
pubmed: 36433898
ACS Nano. 2021 Jul 27;15(7):11396-11405
pubmed: 34165297
Nanomaterials (Basel). 2015 Jun 23;5(2):1124-1135
pubmed: 28347055
ACS Appl Mater Interfaces. 2021 Jul 21;13(28):33536-33545
pubmed: 34251791
Carbohydr Res. 2009 Nov 23;344(17):2375-82
pubmed: 19800053
Nanotechnology. 2005 Oct;16(10):2346-53
pubmed: 20818017
Adv Mater. 2023 Oct;35(41):e2209215
pubmed: 36972562
Carbohydr Polym. 2021 May 15;260:117835
pubmed: 33712172
Adv Mater. 2018 Jun;30(25):e1800671
pubmed: 29726051
Int J Mol Sci. 2021 Jul 04;22(13):
pubmed: 34281254
J Nanobiotechnology. 2011 Aug 03;9:30
pubmed: 21812950
Curr Opin Chem Eng. 2011 Oct;1(1):3-10
pubmed: 23730551
Nat Nanotechnol. 2015 Sep;10(9):817-23
pubmed: 26167765
Langmuir. 2020 Dec 29;36(51):15592-15602
pubmed: 33326249
Small. 2009 Jul;5(13):1553-61
pubmed: 19326357
ACS Appl Mater Interfaces. 2021 May 19;13(19):22098-22109
pubmed: 33945683
Molecules. 2015 May 18;20(5):8856-74
pubmed: 25993417
Adv Healthc Mater. 2018 Jul;7(13):e1701503
pubmed: 29808627
Carbohydr Polym. 2021 Apr 1;257:117671
pubmed: 33541624
Nat Commun. 2020 Nov 5;11(1):5599
pubmed: 33154360
J Colloid Interface Sci. 2021 Feb 1;583:80-88
pubmed: 32977194
ACS Appl Mater Interfaces. 2014 Sep 24;6(18):16147-55
pubmed: 25144307
Mar Drugs. 2013 May 13;11(5):1534-52
pubmed: 23670533
Nat Rev Microbiol. 2015 May;13(5):310-7
pubmed: 25817583
Polymers (Basel). 2020 Feb 13;12(2):
pubmed: 32069877
ACS Appl Mater Interfaces. 2019 Jul 3;11(26):22897-22914
pubmed: 31180196
ACS Appl Mater Interfaces. 2017 May 10;9(18):15342-15349
pubmed: 28422479
ACS Appl Bio Mater. 2022 Aug 15;:
pubmed: 35969409
ACS Appl Mater Interfaces. 2021 Feb 17;13(6):7600-7607
pubmed: 33538573