Multichannel measurements of C. elegans largest Lyapunov exponents using optical diffraction.
Journal
Applied optics
ISSN: 1539-4522
Titre abrégé: Appl Opt
Pays: United States
ID NLM: 0247660
Informations de publication
Date de publication:
10 Oct 2023
10 Oct 2023
Historique:
medline:
19
10
2023
pubmed:
19
10
2023
entrez:
19
10
2023
Statut:
ppublish
Résumé
Dynamic diffraction (DOD) is a form of microscopy that allows the dynamic tracking of changing shapes in a 1D time series. DOD can capture the locomotion of a nematode while swimming freely in a 3D space, allowing the locomotion of the worm to more closely mimic natural behavior than in some other laboratory environments. More importantly, we are able to see markers of chaos as DOD covers dynamics on multiple length scales. This work introduces a multichannel method to measure the dynamic complexity of microscopic organisms. We show that parameters associated with chaos, such as the largest Lyapunov exponent (LLE), the mean frequency, mutual information (MI), and the embedding dimension, are independent of the specific point sampled in the diffraction pattern, thus demonstrating experimentally the consistency of our dynamic parameters sampled at various locations (channels) in the associated optical far-field pattern.
Identifiants
pubmed: 37855491
pii: 540641
doi: 10.1364/AO.500838
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM