Dual PI3K/HDAC Inhibitor BEBT-908 Exhibits Potent Efficacy as Monotherapy for Primary Central Nervous System Lymphoma.
Humans
Mice
Animals
Histone Deacetylase Inhibitors
/ pharmacology
Phosphatidylinositol 3-Kinases
/ metabolism
Chromatography, Liquid
Tandem Mass Spectrometry
Phosphoinositide-3 Kinase Inhibitors
Neoplasms
Lymphoma, Non-Hodgkin
Lymphoma
/ drug therapy
Xenograft Model Antitumor Assays
Hematologic Neoplasms
Central Nervous System
/ metabolism
Cell Line, Tumor
Journal
Targeted oncology
ISSN: 1776-260X
Titre abrégé: Target Oncol
Pays: France
ID NLM: 101270595
Informations de publication
Date de publication:
Nov 2023
Nov 2023
Historique:
accepted:
02
10
2023
medline:
23
11
2023
pubmed:
19
10
2023
entrez:
19
10
2023
Statut:
ppublish
Résumé
The efficacy of systemic treatment for primary central nervous system lymphoma (PCNSL) is limited because of the blood-brain barrier (BBB) and the ineffectiveness of chemotherapy. The dual PI3K/HDAC inhibitor BEBT-908 has exhibited favorable in vivo distribution and activity in various cancers. The aims of this study were to assess the efficacy of BEBT-908 in brain orthotopic mouse models of hematological malignancies, to investigate its pharmacologic properties, and to elucidate the underlying mechanism of action. We evaluated the anticancer activity of BEBT-908 in various hematological malignancies through cell viability assays. The impact of BEBT-908 on c-Myc expression and ferroptosis signaling pathways was assessed using Western blotting, qPCR, ROS detection, GSH/GSSG detection, and IHC. Pharmacokinetic and pharmacodynamic profiles were assessed through LC-MS/MS and Western blotting. The effects of BEBT-908 in vivo were examined using xenografts and brain orthotopic mouse models. Our findings demonstrate that BEBT-908 exhibits promising anti-tumor activity in vitro and in vivo across multiple subtypes of hematological malignancies. Furthermore, BEBT-908 exhibits excellent BBB penetration and inhibits tumor growth in a brain orthotopic lymphoma model with prolonged survival of host mice. Mechanistically, BEBT-908 downregulated c-Myc expression, which contributed to ferroptosis, ultimately leading to tumor shrinkage. Our study provides robust evidence for the dual PI3K/HDAC inhibitor BEBT-908 as an effective anti-cancer agent for PCNSL.
Sections du résumé
BACKGROUND
BACKGROUND
The efficacy of systemic treatment for primary central nervous system lymphoma (PCNSL) is limited because of the blood-brain barrier (BBB) and the ineffectiveness of chemotherapy. The dual PI3K/HDAC inhibitor BEBT-908 has exhibited favorable in vivo distribution and activity in various cancers.
OBJECTIVES
OBJECTIVE
The aims of this study were to assess the efficacy of BEBT-908 in brain orthotopic mouse models of hematological malignancies, to investigate its pharmacologic properties, and to elucidate the underlying mechanism of action.
METHODS
METHODS
We evaluated the anticancer activity of BEBT-908 in various hematological malignancies through cell viability assays. The impact of BEBT-908 on c-Myc expression and ferroptosis signaling pathways was assessed using Western blotting, qPCR, ROS detection, GSH/GSSG detection, and IHC. Pharmacokinetic and pharmacodynamic profiles were assessed through LC-MS/MS and Western blotting. The effects of BEBT-908 in vivo were examined using xenografts and brain orthotopic mouse models.
RESULTS
RESULTS
Our findings demonstrate that BEBT-908 exhibits promising anti-tumor activity in vitro and in vivo across multiple subtypes of hematological malignancies. Furthermore, BEBT-908 exhibits excellent BBB penetration and inhibits tumor growth in a brain orthotopic lymphoma model with prolonged survival of host mice. Mechanistically, BEBT-908 downregulated c-Myc expression, which contributed to ferroptosis, ultimately leading to tumor shrinkage.
CONCLUSION
CONCLUSIONS
Our study provides robust evidence for the dual PI3K/HDAC inhibitor BEBT-908 as an effective anti-cancer agent for PCNSL.
Identifiants
pubmed: 37855991
doi: 10.1007/s11523-023-01006-z
pii: 10.1007/s11523-023-01006-z
doi:
Substances chimiques
Histone Deacetylase Inhibitors
0
BEBT-908
0
Phosphatidylinositol 3-Kinases
EC 2.7.1.-
Phosphoinositide-3 Kinase Inhibitors
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
941-952Subventions
Organisme : National Science and Technology Major Project
ID : 2016ZX09101002
Organisme : Guangdong Provincial Pearl River Talents Program
ID : 2014ZT05Y232
Organisme : Guangzhou Municipal Science and Technology Project
ID : 201909020004
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Références
Deckert M, Engert A, Brück W, et al. Modern concepts in the biology, diagnosis, differential diagnosis and treatment of primary central nervous system lymphoma. Leukemia. 2011;25(12):1797–807. https://doi.org/10.1038/leu.2011.169 .
doi: 10.1038/leu.2011.169
pubmed: 21818113
Houillier C, Soussain C, Ghesquières H, et al. Management and outcome of primary CNS lymphoma in the modern era: an LOC network study. Neurology. 2020;94(10):e1027–39. https://doi.org/10.1212/WNL.0000000000008900 .
doi: 10.1212/WNL.0000000000008900
pubmed: 31907289
pmcid: 7238921
Shao L, Xu C, Wu H, et al. Recent progress on primary central nervous system lymphoma-from bench to bedside. Front Oncol. 2021;11: 689843. https://doi.org/10.3389/fonc.2021.689843 .
doi: 10.3389/fonc.2021.689843
pubmed: 34485125
pmcid: 8416460
Grommes C, DeAngelis LM. Primary CNS lymphoma. J Clin Oncol. 2017;35(21):2410–8. https://doi.org/10.1200/JCO.2017.72.7602 .
doi: 10.1200/JCO.2017.72.7602
pubmed: 28640701
pmcid: 5516483
Schabet M. Epidemiology of primary CNS lymphoma. J Neurooncol. 1999;43(3):199–201. https://doi.org/10.1023/a:1006290032052 .
doi: 10.1023/a:1006290032052
pubmed: 10563423
Schultz C, Scott C, Sherman W, et al. Preirradiation chemotherapy with cyclophosphamide, doxorubicin, vincristine, and dexamethasone for primary CNS lymphomas: initial report of radiation therapy oncology group protocol 88-06. J Clin Oncol. 1996;14(2):556–64. https://doi.org/10.1200/JCO.1996.14.2.556 .
doi: 10.1200/JCO.1996.14.2.556
pubmed: 8636771
Eyre TA, Kirkwood AA, Wolf J, et al. Stand-alone intrathecal central nervous system (CNS) prophylaxis provide unclear benefit in reducing CNS relapse risk in elderly DLBCL patients treated with R-CHOP and is associated increased infection-related toxicity. Br J Haematol. 2019;187(2):185–94. https://doi.org/10.1111/bjh.16070 .
doi: 10.1111/bjh.16070
pubmed: 31222719
Gleeson M, Counsell N, Cunningham D, et al. Central nervous system relapse of diffuse large B-cell lymphoma in the rituximab era: results of the UK NCRI R-CHOP-14 versus 21 trial. Ann Oncol. 2017;28(10):2511–6. https://doi.org/10.1093/annonc/mdx353 .
doi: 10.1093/annonc/mdx353
pubmed: 28961838
pmcid: 5834096
Ferreri AJ, Cwynarski K, Pulczynski E, et al. Chemoimmunotherapy with methotrexate, cytarabine, thiotepa, and rituximab (MATRix regimen) in patients with primary CNS lymphoma: results of the first randomisation of the International Extranodal Lymphoma Study Group-32 (IELSG32) phase 2 trial. Lancet Haematol. 2016;3(5):e217–27. https://doi.org/10.1016/S2352-3026(16)00036-3 .
doi: 10.1016/S2352-3026(16)00036-3
pubmed: 27132696
Chen T, Liu Y, Wang Y, et al. Evidence-based expert consensus on the management of primary central nervous system lymphoma in China. J Hematol Oncol. 2022;15(1):136. https://doi.org/10.1186/s13045-022-01356-7 .
doi: 10.1186/s13045-022-01356-7
pubmed: 36176002
pmcid: 9524012
Wilson MR, Eyre TA, Kirkwood AA, et al. Timing of high-dose methotrexate CNS prophylaxis in DLBCL: a multicenter international analysis of 1384 patients. Blood. 2022;139(16):2499–511. https://doi.org/10.1182/blood.2021014506 .
doi: 10.1182/blood.2021014506
pubmed: 34995350
von Baumgarten L, Illerhaus G, Korfel A, Schlegel U, Deckert M, Dreyling M. The diagnosis and treatment of primary CNS lymphoma. Dtsch Arztebl Int. 2018;115(25):419–26. https://doi.org/10.3238/arztebl.2018.0419 .
doi: 10.3238/arztebl.2018.0419
Mendez JS, Grommes C. Treatment of primary central nervous system lymphoma: from chemotherapy to small molecules. Am Soc Clin Oncol Educ Book. 2018;38:604–15. https://doi.org/10.1200/EDBK_200829 .
doi: 10.1200/EDBK_200829
pubmed: 30231317
Langner-Lemercier S, Houillier C, Soussain C, et al. Primary CNS lymphoma at first relapse/progression: characteristics, management, and outcome of 256 patients from the French LOC network. Neuro Oncol. 2016;18(9):1297–303. https://doi.org/10.1093/neuonc/now033 .
doi: 10.1093/neuonc/now033
pubmed: 26951382
pmcid: 4998995
Yu H, Kong H, Li C, et al. Bruton’s tyrosine kinase inhibitors in primary central nervous system lymphoma-evaluation of anti-tumor efficacy and brain distribution. Transl Cancer Res. 2021;10(5):1975–83. https://doi.org/10.21037/tcr-21-50 .
doi: 10.21037/tcr-21-50
pubmed: 35116520
pmcid: 8798964
Korfel A, Schlegel U, Herrlinger U, et al. Phase II trial of temsirolimus for relapsed/refractory primary CNS lymphoma. J Clin Oncol. 2016;34(15):1757–63. https://doi.org/10.1200/JCO.2015.64.9897 .
doi: 10.1200/JCO.2015.64.9897
pubmed: 26976424
Ghesquieres H, Chevrier M, Laadhari M, et al. Lenalidomide in combination with intravenous rituximab (REVRI) in relapsed/refractory primary CNS lymphoma or primary intraocular lymphoma: a multicenter prospective “proof of concept” phase II study of the French Oculo-Cerebral lymphoma (LOC) Network and the Lymphoma Study Association (LYSA)†. Ann Oncol. 2019;30(4):621–8. https://doi.org/10.1093/annonc/mdz032 .
doi: 10.1093/annonc/mdz032
pubmed: 30698644
Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):311–22. https://doi.org/10.1056/NEJMoa1513257 .
doi: 10.1056/NEJMoa1513257
pubmed: 26639348
Zhang X, Wu Y, Sun X, et al. The PI3K/AKT/mTOR signaling pathway is aberrantly activated in primary central nervous system lymphoma and correlated with a poor prognosis. BMC Cancer. 2022;22(1):190. https://doi.org/10.1186/s12885-022-09275-z .
doi: 10.1186/s12885-022-09275-z
pubmed: 35184749
pmcid: 8859899
Tarantelli C, Gaudio E, Hillmann P, et al. The novel TORC1/2 kinase inhibitor PQR620 has anti-tumor activity in lymphomas as a single agent and in combination with venetoclax. Cancers (Basel). 2019;11(6):775. https://doi.org/10.3390/cancers11060775 .
doi: 10.3390/cancers11060775
pubmed: 31167506
Jain N, Singh S, Laliotis G, et al. Targeting phosphatidylinositol 3 kinase-β and -δ for Bruton tyrosine kinase resistance in diffuse large B-cell lymphoma. Blood Adv. 2020;4(18):4382–92. https://doi.org/10.1182/bloodadvances.2020001685 .
doi: 10.1182/bloodadvances.2020001685
pubmed: 32926124
pmcid: 7509871
Zhang X, Liu Y. Targeting the PI3K/AKT/mTOR signaling pathway in primary central nervous system lymphoma: current status and future prospects. CNS Neurol Disord Drug Targets. 2020;19(3):165–73. https://doi.org/10.2174/1871527319666200517112252 .
doi: 10.2174/1871527319666200517112252
pubmed: 32416683
Grommes C, Gavrilovic I, Miller AM, et al. Phase Ib of copanlisib in combination with ibrutinib in recurrent/refractory primary CNS lymphoma (PCNSL). Blood. 2019;134(Suppl 1):1598. https://doi.org/10.1182/blood-2019-126214 .
doi: 10.1182/blood-2019-126214
Rahmani M, Aust MM, Benson EC, Wallace L, Friedberg J, Grant S. PI3K/mTOR inhibition markedly potentiates HDAC inhibitor activity in NHL cells through BIM- and MCL-1-dependent mechanisms in vitro and in vivo. Clin Cancer Res. 2014;20(18):4849–60. https://doi.org/10.1158/1078-0432.CCR-14-0034 .
doi: 10.1158/1078-0432.CCR-14-0034
pubmed: 25070836
pmcid: 4166554
Fan F, Liu P, Bao R, et al. A dual PI3K/HDAC inhibitor induces immunogenic ferroptosis to potentiate cancer immune checkpoint therapy. Cancer Res. 2021;81(24):6233–45. https://doi.org/10.1158/0008-5472.CAN-21-1547 .
doi: 10.1158/0008-5472.CAN-21-1547
pubmed: 34711611
Kapadia B, Nanaji NM, Bhalla K, et al. Fatty acid synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL. Nat Commun. 2018;9(1):829. https://doi.org/10.1038/s41467-018-03028-y .
doi: 10.1038/s41467-018-03028-y
pubmed: 29483509
pmcid: 5827760
Wu W, Bi C, Credille KM, et al. Inhibition of tumor growth and metastasis in non-small cell lung cancer by LY2801653, an inhibitor of several oncokinases, including MET. Clin Cancer Res. 2013;19(20):5699–710. https://doi.org/10.1158/1078-0432.CCR-13-1758 .
doi: 10.1158/1078-0432.CCR-13-1758
pubmed: 23989980
Dong Y, Tu R, Liu H, Qing G. Regulation of cancer cell metabolism: oncogenic MYC in the driver’s seat. Signal Transduct Target Ther. 2020;5(1):124. https://doi.org/10.1038/s41392-020-00235-2 .
doi: 10.1038/s41392-020-00235-2
pubmed: 32651356
pmcid: 7351732
Kurland JF, Tansey WP. Myc-mediated transcriptional repression by recruitment of histone deacetylase. Cancer Res. 2008;68(10):3624–9. https://doi.org/10.1158/0008-5472.CAN-07-6552 .
doi: 10.1158/0008-5472.CAN-07-6552
pubmed: 18483244
Alborzinia H, Flórez AF, Kreth S, et al. MYCN mediates cysteine addiction and sensitizes neuroblastoma to ferroptosis. Nat Cancer. 2022;3(4):471–85. https://doi.org/10.1038/s43018-022-00355-4 .
doi: 10.1038/s43018-022-00355-4
pubmed: 35484422
pmcid: 9050595
Anderson GR, Wardell SE, Cakir M, et al. PIK3CA mutations enable targeting of a breast tumor dependency through mTOR-mediated MCL-1 translation. Sci Transl Med. 2016;8(369): 369ra175. https://doi.org/10.1126/scitranslmed.aae0348 .
doi: 10.1126/scitranslmed.aae0348
pubmed: 27974663
pmcid: 5626456
Martz CA, Ottina KA, Singleton KR, et al. Systematic identification of signaling pathways with potential to confer anticancer drug resistance. Sci Signal. 2014;7(357):ra121. https://doi.org/10.1126/scisignal.aaa1877 .
doi: 10.1126/scisignal.aaa1877
pubmed: 25538079
pmcid: 4353587
Li L, Li Y, Que X, et al. Prognostic significances of overexpression MYC and/or BCL2 in R-CHOP-treated diffuse large B-cell lymphoma: a systematic review and meta-analysis. Sci Rep. 2018;8(1): 6267. https://doi.org/10.1038/s41598-018-24631-5 .
doi: 10.1038/s41598-018-24631-5
pubmed: 29674626
pmcid: 5908914
Fujimoto K, Shinojima N, Hayashi M, Nakano T, Ichimura K, Mukasa A. Histone deacetylase inhibition enhances the therapeutic effects of methotrexate on primary central nervous system lymphoma. Neurooncol Adv. 2020;2(1): vdaa084. https://doi.org/10.1093/noajnl/vdaa084 .
doi: 10.1093/noajnl/vdaa084
pubmed: 32793886
pmcid: 7415262