Busulfan and subsequent malignancy: An evidence-based risk assessment.


Journal

Pediatric blood & cancer
ISSN: 1545-5017
Titre abrégé: Pediatr Blood Cancer
Pays: United States
ID NLM: 101186624

Informations de publication

Date de publication:
Jan 2024
Historique:
revised: 22 09 2023
received: 18 08 2023
accepted: 10 10 2023
medline: 27 11 2023
pubmed: 19 10 2023
entrez: 19 10 2023
Statut: ppublish

Résumé

The incidence of secondary malignancies associated with busulfan exposure is considered low, but has been poorly characterized. Because this alkylating agent is increasingly utilized as conditioning prior to gene therapy in nonmalignant hematologic and related disorders, more precise characterization of busulfan's potential contribution to subsequent malignant risk is warranted. We conducted a literature-based assessment of busulfan and subsequent late effects, with emphasis on secondary malignancies, identifying publications via PubMed searches, and selecting those reporting at least 3 years of follow-up. We identified eight pediatric and 13 adult publications describing long-term follow-up in 570 pediatric and 2076 adult hematopoietic cell transplant (HCT) recipients. Secondary malignancies were reported in 0.5% of pediatric HCT recipients, with no cases of myelodysplastic syndrome (MDS) or acute myelocytic leukemia (AML). Fatal secondary malignancies were reported in 0.8% of 1887 evaluable adult HCT recipients, and an overall incidence of secondary malignancies of 4.8% was reported in a subset of 389 evaluable adult patients. We also reviewed long-term results from eight publications evaluating lentiviral- and human promotor-based HSC-targeted gene therapy in 215 patients with nonmalignant conditions, in which busulfan/treosulfan monotherapy or busulfan/fludarabine was the only conditioning. Two malignancies were reported in patients with sickle cell disease (SCD), one of which was potentially busulfan-related. No additional malignancies were reported in 173 patients with follow-up of 5-12 years. The incidence of busulfan-related secondary malignancies is low, and likely to be substantially less than 1% in pediatric transplant recipients, especially those receiving busulfan monotherapy for nonmalignant conditions other than SCD.

Sections du résumé

BACKGROUND BACKGROUND
The incidence of secondary malignancies associated with busulfan exposure is considered low, but has been poorly characterized. Because this alkylating agent is increasingly utilized as conditioning prior to gene therapy in nonmalignant hematologic and related disorders, more precise characterization of busulfan's potential contribution to subsequent malignant risk is warranted.
PROCEDURE METHODS
We conducted a literature-based assessment of busulfan and subsequent late effects, with emphasis on secondary malignancies, identifying publications via PubMed searches, and selecting those reporting at least 3 years of follow-up.
RESULTS RESULTS
We identified eight pediatric and 13 adult publications describing long-term follow-up in 570 pediatric and 2076 adult hematopoietic cell transplant (HCT) recipients. Secondary malignancies were reported in 0.5% of pediatric HCT recipients, with no cases of myelodysplastic syndrome (MDS) or acute myelocytic leukemia (AML). Fatal secondary malignancies were reported in 0.8% of 1887 evaluable adult HCT recipients, and an overall incidence of secondary malignancies of 4.8% was reported in a subset of 389 evaluable adult patients. We also reviewed long-term results from eight publications evaluating lentiviral- and human promotor-based HSC-targeted gene therapy in 215 patients with nonmalignant conditions, in which busulfan/treosulfan monotherapy or busulfan/fludarabine was the only conditioning. Two malignancies were reported in patients with sickle cell disease (SCD), one of which was potentially busulfan-related. No additional malignancies were reported in 173 patients with follow-up of 5-12 years.
CONCLUSION CONCLUSIONS
The incidence of busulfan-related secondary malignancies is low, and likely to be substantially less than 1% in pediatric transplant recipients, especially those receiving busulfan monotherapy for nonmalignant conditions other than SCD.

Identifiants

pubmed: 37856098
doi: 10.1002/pbc.30738
doi:

Substances chimiques

Busulfan G1LN9045DK
Vidarabine FA2DM6879K

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

e30738

Informations de copyright

© 2023 The Authors. Pediatric Blood & Cancer published by Wiley Periodicals LLC.

Références

Ciurea SO, Andersson BS. Busulfan in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2009;15(5):523-536. doi:10.1016/j.bbmt.2008.12.489
Reece D, Song K, LeBlanc R, et al. Efficacy and safety of busulfan-based conditioning regimens for multiple myeloma. Oncologist. 2013;18(5):611-618. doi:10.1634/theoncologist.2012-0384
Palmer J, McCune JS, Perales MA, et al. Personalizing busulfan-based conditioning: considerations from the American Society for Blood and Marrow Transplantation Practice Guidelines Committee. Biol Blood Marrow Transplant. 2016;22(11):1915-1925. doi:10.1016/j.bbmt.2016.07.013
Busulfan Package Insert US. https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/020954s014lbl.pdf
Hsieh MM, Bonner M, Pierciey FJ, et al. Myelodysplastic syndrome unrelated to lentiviral vector in a patient treated with gene therapy for sickle cell disease. Blood Adv. 2020;4(9):2058-2063. doi:10.1182/bloodadvances.2019001330
Bhatia S. Therapy-related myelodysplasia and acute myeloid leukemia. Semin Oncol. 2013;40(6):666-675. doi:10.1053/j.seminoncol.2013.09.013
Chow EJ, Anderson L, Baker KS, et al. Late effects surveillance recommendations among survivors of childhood hematopoietic cell transplantation: a Children's Oncology Group report. Biol Blood Marrow Transplant. 2016;22(5):782-795. doi:10.1016/j.bbmt.2016.01.023
Astrakhan A, Sather BD, Ryu BY, et al. Ubiquitous high-level gene expression in hematopoietic lineages provides effective lentiviral gene therapy of murine Wiskott-Aldrich syndrome. Blood. 2012;119(19):4395-4407. doi:10.1182/blood-2011
Schwarzer A, Talbot SR, Selich A, et al. Predicting genotoxicity of viral vectors for stem cell gene therapy using gene expression-based machine learning. Mol Ther. 2021;29(12):3383-3397. doi:10.1016/j.ymthe.2021.06.017
Eichler F, Duncan C, Musolino PL, et al. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N Engl J Med. 2017;377(17):1630-1638. doi:10.1056/nejmoa1700554
FDA. Summary basis for regulatory action-SKYSONA. FDA, USA; 2021.
Saglio F, Zecca M, Pagliara D, et al. Occurrence of long-term effects after hematopoietic stem cell transplantation in children affected by acute leukemia receiving either busulfan or total body irradiation: results of an AIEOP (Associazione Italiana Ematologia Oncologia Pediatrica) retrospective study. Bone Marrow Transplant. 2020;55(10):1918-1927. doi:10.1038/s41409-020-0806-8
Allewelt H, El-Khorazaty J, Mendizabal A, et al. Late effects after umbilical cord blood transplantation in very young children after busulfan-based, myeloablative conditioning. Biol Blood Marrow Transplant. 2016;22(9):1627-1635. doi:10.1016/j.bbmt.2016.05.024
Rahal I, Galambrun C, Bertrand Y, et al. Late effects after hematopoietic stem cell transplantation for β-thalassemia major: the french national experience. Haematologica. 2018;103(7):1143-1149. doi:10.3324/haematol.2017.183467
Mitsuhashi K, Kako S, Shigematsu A, et al. Comparison of cyclophosphamide combined with total body irradiation, oral busulfan, or intravenous busulfan for allogeneic hematopoietic cell transplantation in adults with acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2016;22(12):2194-2200. doi:10.1016/j.bbmt.2016.09.007
Anur P, Friedman DN, Sklar C, et al. Late effects in patients with Fanconi anemia following allogeneic hematopoietic stem cell transplantation from alternative donors. Bone Marrow Transplant. 2016;51(7):938-944. doi:10.1038/bmt.2016.32
Kato M, Hasegawa D, Koh K, et al. Allogeneic haematopoietic stem cell transplantation for infant acute lymphoblastic leukaemia with KMT2A (MLL) rearrangements: a retrospective study from the paediatric acute lymphoblastic leukaemia working group of the Japan Society for Haematopoietic Cell Transplantation. Br J Haematol. 2015;168(4):564-570. doi:10.1111/bjh.13174
Bernard F, Auquier P, Herrmann I, et al. Health status of childhood leukemia survivors who received hematopoietic cell transplantation after BU or TBI: an LEA study. Bone Marrow Transplant. 2014;49(5):709-716. doi:10.1038/bmt.2014.3
Bresters D, Van Gils ICM, Kollen WJW, et al. High burden of late effects after haematopoietic stem cell transplantation in childhood: a single-centre study. Bone Marrow Transplant. 2010;45(1):79-85. doi:10.1038/bmt.2009.92
Yoon JH, Min GJ, Park SS, et al. Autologous hematopoietic cell transplantation using dose-reduced intravenous busulfan, melphalan, and thiotepa for high-risk or relapsed lymphomas. Bone Marrow Transplant. 2019;54(2):330-333. doi:10.1038/s41409-018-0289-z
Kennedy VE, Savani BN, Greer JP, et al. Reduced-intensity conditioning with fludarabine, cyclophosphamide, and rituximab is associated with improved outcomes compared with fludarabine and busulfan after allogeneic stem cell transplantation for B cell malignancies. Biol Blood Marrow Transplant. 2016;22(10):1801-1807. doi:10.1016/j.bbmt.2016.06.029
Ghosh N, Ahmed S, Ahn KW, et al. Association of reduced-intensity conditioning regimens with overall survival among patients with non-Hodgkin lymphoma undergoing allogeneic transplant. JAMA Oncol. 2020;6(7):1011-1018. doi:10.1001/jamaoncol.2020.1278
Sakellari I, Mallouri D, Batsis I, et al. Carmustine, etoposide, cytarabine and melphalan versus a newly designed intravenous busulfan-based busulfex, etoposide and melphalan conditioning regimen for autologous hematopoietic cell transplant: a retrospective matched-pair analysis in advanced Hodgkin and non-Hodgkin lymphomas. Leuk Lymphoma. 2015;56(11):3071-3081. doi:10.3109/10428194.2015.1028054
Epperla N, Ahn KW, Khanal M, et al. Impact of reduced-intensity conditioning regimens on outcomes in diffuse large b cell lymphoma undergoing allogeneic transplantation. Biol Blood Marrow Transplant. 2021;27:58-66. doi:10.1016/j.bbmt.2020.09.014
Sakellari I, Gavriilaki E, Chatziioannou K, et al. Long-term outcomes of total body irradiation plus cyclophosphamide versus busulfan plus cyclophosphamide as conditioning regimen for acute lymphoblastic leukemia: a comparative study. Ann Hematol. 2018;97(10):1987-1994. doi:10.1007/s00277-018-3383-9
Cornillon J, Balsat M, Cabrespine A, et al. Impact of ATG dose on the outcome of patients undergoing reduced intensity conditioning followed by allogeneic hematopoietic stem cell transplantation for hematological malignancies. Acta Haematol. 2016;136(4):193-200. doi:10.1159/000446835
Vaezi M, Gharib C, Souri M, Ghavamzadeh A. Late complications in acute leukemia patients following HSCT: a single center experience. Int J Hematol Oncol Stem Cell Res. 2016;10:1-6.
Oudin C, Chevallier P, Furst S, et al. Reduced-toxicity conditioning prior to allogeneic stem cell transplantation improves outcome in patients with myeloid malignancies. Haematologica. 2014;99(11):1762-1768. doi:10.3324/haematol.2014.105981
Chen YB, Coughlin E, Kennedy KF, et al. Busulfan dose intensity and outcomes in reduced-intensity allogeneic peripheral blood stem cell transplantation for myelodysplastic syndrome or acute myeloid leukemia. Biol Blood Marrow Transplant. 2013;19(6):981-987. doi:10.1016/j.bbmt.2013.03.016
Damlaj M, Alkhateeb HB, Hefazi M, et al. Fludarabine-busulfan reduced-intensity conditioning in comparison with fludarabine-melphalan is associated with increased relapse risk in spite of pharmacokinetic dosing. Biol Blood Marrow Transplant. 2016;22(8):1431-1439. doi:10.1016/j.bbmt.2016.04.026
Kebriaei P, Anasetti C, Zhang MJ, et al. Intravenous busulfan compared with total body irradiation pretransplant conditioning for adults with acute lymphoblastic leukemia. Biol Blood Marrow Transplant. 2018;24(4):726-733. doi:10.1016/j.bbmt.2017.11.025
Mehta RS, Bassett R, Chen J, et al. Myeloablative fractionated busulfan with fludarabine in older patients: long term disease-specific outcomes of a prospective phase II clinical trial. Transplant Cell Ther. 2021;27(11):913.e1-913.e12. doi:10.1016/j.jtct.2021.07.021
Salhotra A, Yang D, Mokhtari S, et al. Long-term follow-up of patients with poor-risk acute leukemia treated on a phase 2 trial undergoing intensified conditioning regimen prior to allogeneic hematopoietic cell transplantation. Leuk Lymphoma. 2022;63(5):1220-1226. doi:10.1080/10428194.2021.2012661
Ousia S, Kalra A, Williamson TS, et al. Hematopoietic cell transplant outcomes after myeloablative conditioning with fludarabine, busulfan, low-dose total body irradiation, and rabbit antithymocyte globulin. Clin Transplant. 2020;34(9). doi:10.1111/ctr.14018
Michelis FV, Hedley DW, Malhotra S, et al. Mobilization of leukemic cells using plerixafor as part of a myeloablative preparative regimen for patients with acute myelogenous leukemia undergoing allografting: assessment of safety and tolerability. Biol Blood Marrow Transplant. 2019;25(6):1158-1163. doi:10.1016/j.bbmt.2019.01.014
Kohn DB, Booth C, Shaw KL, et al. Autologous ex vivo lentiviral gene therapy for adenosine deaminase deficiency. N Engl J Med. 2021;384(21):2002-2013. doi:10.1056/nejmoa2027675
Mamcarz E, Zhou S, Lockey T, et al. Lentiviral gene therapy combined with low-dose busulfan in infants with SCID-X1. N Engl J Med. 2019;380(16):1525-1534. doi:10.1056/nejmoa1815408
De Ravin SS, Wu X, Moir S, et al. Lentiviral hematopoietic stem cell gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med. 2016;8(335). doi:10.1126/scitranslmed.aad8856
Aiuti A, Biasco L, Scaramuzza S, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science (1979). 2013;341(6148). doi:10.1126/science.1233151
Ferrua F, Marangoni F, Aiuti A, Roncarolo MG. Gene therapy for Wiskott-Aldrich syndrome: history, new vectors, future directions. J Allergy Clin Immunol. 2020;146(2):262-265. doi:10.1016/j.jaci.2020.06.018
Marktel S, Scaramuzza S, Cicalese MP, et al. Intrabone hematopoietic stem cell gene therapy for adult and pediatric patients affected by transfusion-dependent ß-thalassemia. Nat Med. 2019;25(2):234-241. doi:10.1038/s41591-018-0301-6
Thompson AA, Walters MC, Kwiatkowski J, et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2018;378(16):1479-1493. doi:10.1056/nejmoa1705342
Kohn DB, Booth C, Kang EM, et al. Lentiviral gene therapy for X-linked chronic granulomatous disease. Nat Med. 2020;26(2):200-206. doi:10.1038/s41591-019-0735-5
Biffi A, Montini E, Lorioli L, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science (1979). 2013;341(6148). doi:10.1126/science.1233158
Fumagalli F, Calbi V, Natali Sora MG, et al. Lentiviral haematopoietic stem-cell gene therapy for early-onset metachromatic leukodystrophy: long-term results from a non-randomised, open-label, phase 1/2 trial and expanded access. Lancet North Am Ed. 2022;399(10322):372-383. doi:10.1016/S0140-6736(21)02017-1
Kanter J, Walters MC, Krishnamurti L, et al. Biologic and clinical efficacy of LentiGlobin for sickle cell disease. N Engl J Med. 2022;386(7):617-628. doi:10.1056/nejmoa2117175
Goyal S, Tisdale J, Schmidt M, et al. Acute myeloid leukemia case after gene therapy for sickle cell disease. N Engl J Med. 2022;386(2):138-147. doi:10.1056/nejmoa2109167
White SL, Lee TD, Toy T, et al. Evaluation of clonal hematopoiesis in pediatric ADA-SCID gene therapy participants. Blood Adv. 2022;6(21):5732-5736. doi:10.1182/bloodadvances.2022007803
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48. doi:10.3322/caac.21763
Ribeil JA. Primary myelofibrosis in untreated sickle cell disease: Are adult patients at higher risk for developing hematological myeloid neoplasms? Am J Hematol. 2022;97(1):4-6. doi:10.1002/ajh.26371

Auteurs

Janel R Long-Boyle (JR)

University of California, San Francisco, California, USA.

Donald B Kohn (DB)

University of California, Los Angeles, California, USA.

Ami J Shah (AJ)

Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, California, USA.

Sueli Marques Spencer (SM)

Rocket Pharmaceuticals, Inc., Cranbury, New Jersey, USA.

Julian Sevilla (J)

Hematología y Hemoterapia, Fundación para la investigación Biomédica, Hospital Infantil Universitario Niño Jesús (HIUNJ), Madrid, Spain.

Claire Booth (C)

Great Ormond Street Hospital, and Great Ormond Street Hospital NHS Foundation Trust, University College of London, Institute of Child Health, London, UK.

José Luis López Lorenzo (JL)

Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain.

Eileen Nicoletti (E)

Rocket Pharmaceuticals, Inc., Cranbury, New Jersey, USA.

Arpita Shah (A)

Rocket Pharmaceuticals, Inc., Cranbury, New Jersey, USA.

Meredith Reatz (M)

Rocket Pharmaceuticals, Inc., Cranbury, New Jersey, USA.

Joana Matos (J)

Rocket Pharmaceuticals, Inc., Cranbury, New Jersey, USA.

Jonathan D Schwartz (JD)

Rocket Pharmaceuticals, Inc., Cranbury, New Jersey, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH