Interleaved x-ray imaging: A method for simultaneous acquisition of quantitative and diagnostic digital subtraction angiography.
interventional imaging
quantitative angiography
radiation dose reduction
Journal
Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746
Informations de publication
Date de publication:
19 Oct 2023
19 Oct 2023
Historique:
revised:
26
09
2023
received:
01
06
2023
accepted:
27
09
2023
medline:
19
10
2023
pubmed:
19
10
2023
entrez:
19
10
2023
Statut:
aheadofprint
Résumé
Flow altering angiographic procedures suffer from ill-defined, qualitative endpoints. Quantitative digital subtraction angiography (qDSA) is an emerging technology that aims to address this issue by providing intra-procedural blood velocity measurements from time-resolved, 2D angiograms. To date, qDSA has used 30 frame/s DSA imaging, which is associated with high radiation dose rate compared to clinical diagnostic DSA (up to 4 frame/s). The purpose of this study is to demonstrate an interleaved x-ray imaging method which decreases the radiation dose rate associated with high frame rate qDSA while simultaneously providing low frame rate diagnostic DSA images, enabling the acquisition of both datasets in a single image sequence with a single injection of contrast agent. Interleaved x-ray imaging combines low radiation dose image frames acquired at a high rate with high radiation dose image frames acquired at a low rate. The feasibility of this approach was evaluated on an x-ray system equipped with research prototype software for x-ray tube control. qDSA blood velocity quantification was evaluated in a flow phantom study for two lower dose interleaving protocols (LD1: The LD1 and LD2 interleaved protocols resulted in dose rate reductions of -67.7% and -85.5%, compared to the full dose qDSA scan. For the full dose protocol, the Bland-Altman limits of agreement (LOA) between qDSA and ultrasound velocities were [0.7, 6.7] cm/s with a mean difference of 3.7 cm/s. The LD1 interleaved protocol results were similar (LOA: [0.3, 6.9] cm/s, bias: 3.6 cm/s). The LD2 interleaved protocol resulted in slightly larger LOA: [-2.5, 5.5] cm/s with a decrease in the bias: 1.5 cm/s. Linear regression analysis showed a strong correlation between ultrasound and qDSA derived velocities using the LD1 protocol, with a R The interleaved method enables simultaneous acquisition of low-dose high-rate images for intra-procedural blood velocity quantification (qDSA) and high-dose low-rate images for vessel morphology evaluation (diagnostic DSA).
Sections du résumé
BACKGROUND
BACKGROUND
Flow altering angiographic procedures suffer from ill-defined, qualitative endpoints. Quantitative digital subtraction angiography (qDSA) is an emerging technology that aims to address this issue by providing intra-procedural blood velocity measurements from time-resolved, 2D angiograms. To date, qDSA has used 30 frame/s DSA imaging, which is associated with high radiation dose rate compared to clinical diagnostic DSA (up to 4 frame/s).
PURPOSE
OBJECTIVE
The purpose of this study is to demonstrate an interleaved x-ray imaging method which decreases the radiation dose rate associated with high frame rate qDSA while simultaneously providing low frame rate diagnostic DSA images, enabling the acquisition of both datasets in a single image sequence with a single injection of contrast agent.
METHODS
METHODS
Interleaved x-ray imaging combines low radiation dose image frames acquired at a high rate with high radiation dose image frames acquired at a low rate. The feasibility of this approach was evaluated on an x-ray system equipped with research prototype software for x-ray tube control. qDSA blood velocity quantification was evaluated in a flow phantom study for two lower dose interleaving protocols (LD1:
RESULTS
RESULTS
The LD1 and LD2 interleaved protocols resulted in dose rate reductions of -67.7% and -85.5%, compared to the full dose qDSA scan. For the full dose protocol, the Bland-Altman limits of agreement (LOA) between qDSA and ultrasound velocities were [0.7, 6.7] cm/s with a mean difference of 3.7 cm/s. The LD1 interleaved protocol results were similar (LOA: [0.3, 6.9] cm/s, bias: 3.6 cm/s). The LD2 interleaved protocol resulted in slightly larger LOA: [-2.5, 5.5] cm/s with a decrease in the bias: 1.5 cm/s. Linear regression analysis showed a strong correlation between ultrasound and qDSA derived velocities using the LD1 protocol, with a R
CONCLUSIONS
CONCLUSIONS
The interleaved method enables simultaneous acquisition of low-dose high-rate images for intra-procedural blood velocity quantification (qDSA) and high-dose low-rate images for vessel morphology evaluation (diagnostic DSA).
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Cancer Institute of the National Institutes of Health
ID : T32CA009206
Informations de copyright
© 2023 The Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.
Références
Lewandowski RJ, Wang D, Gehl J, et al. A comparison of chemoembolization endpoints using angiographic versus transcatheter intraarterial perfusion/MR imaging monitoring. J Vasc Interv Radiol. 2007;18(10):1249-1257. doi:10.1016/j.jvir.2007.06.028
Geschwind JFH, Ramsey DE, Cleffken B, et al. Transcatheter arterial chemoembolization of liver tumors: effects of embolization protocol on injectable volume of chemotherapy and subsequent arterial patency. Cardiovasc Intervent Radiol. 2003;26(2):111-117. doi:10.1007/s00270-002-2524-6
Rhee TK, Young JY, Larson AC, et al. Effect of transcatheter arterial embolization on levels of hypoxia-inducible factor-1alpha in rabbit VX2 liver tumors. J Vasc Interv Radiol. 2007;18(5):639-645. doi:10.1016/j.jvir.2007.02.031
Gaba RC, Wang D, Lewandowski RJ, et al. Four dimensional transcatheter intraarterial perfusion magnetic resonance imaging (4D TRIP-MRI) for monitoring chemoembolization of hepatocellular carcinoma. J Vasc Interv Radiol. 2008;19(11):1589-1595. doi:10.1016/j.jvir.2008.08.010
Waechter I, Bredno J, Hermans R, Weese J, Barratt DC, Hawkes DJ. Model-based blood flow quantification from rotational angiography. Med Image Anal. 2008;12(5):586-602. doi:10.1016/j.media.2008.06.003
Waechter-Stehle I, Groth A, Bruijns T, et al. Model-based blood flow quantification from DSA: quantitative evaluation on patient data and comparison with TCCD. Medical Imaging 2012: Image Processing. SPIE; 2012:1333-1349. doi:10.1117/12.911095
Schmitt H, Grass M, Suurmond R, et al. Reconstruction of blood propagation in three-dimensional rotational X-ray angiography (3D-RA). Comput Med Imaging Graph. 2005;29(7):507-520. doi:10.1016/j.compmedimag.2005.03.006
Schmitt H, Grass M, Rasche V, Schramm O, Haehnel S, Sartor K. An X-ray-based method for the determination of the contrast agent propagation in 3-D vessel structures. IEEE Trans Med Imaging. 2002;21(3):251-262. doi:10.1109/42.996343
Wu Y, Shaughnessy G, Hoffman CA, et al. Quantification of blood velocity with 4D digital subtraction angiography using the shifted least-squares method. AJNR Am J Neuroradiol. 2018;39(10):1871-1877. doi:10.3174/ajnr.A5793
Shaughnessy G, Schafer S, Speidel MA, Strother CM, Mistretta CA. Measuring blood velocity using 4D-DSA: a feasibility study. Med Phys. 2018;45(10):4510-4518. doi:10.1002/mp.13120
Meram E, Shaughnessy G, Longhurst C, et al. Optimization of quantitative time-resolved 3D (4D) digital subtraction angiography in a porcine liver model. Eur Radiol Exp. 2020;4:37. doi:10.1186/s41747-020-00164-3
Meram E, Harari C, Shaughnessy G, et al. Quantitative 4D-digital subtraction angiography to assess changes in hepatic arterial flow during transarterial embolization: a feasibility study in a swine model. J Vasc Interv Radiol. 2019;30(8):1286-1292. doi:10.1016/j.jvir.2019.01.018
Sandoval-Garcia C, Royalty K, Yang P, et al. 4D DSA a new technique for AVM evaluation: a feasibility study. J Neurointerv Surg. 2016;8(3):300-304. doi:10.1136/neurintsurg-2014-011534
Ruedinger KL, Schafer S, Speidel MA, Strother CM. 4D-DSA: development and current neurovascular applications. AJNR Am J Neuroradiol. 2021;42(2):214-220. doi:10.3174/ajnr.A6860
Davis B, Royalty K, Kowarschik M, et al. 4D digital subtraction angiography: implementation and demonstration of feasibility. AJNR Am J Neuroradiol. 2013;34(10):1914-1921. doi:10.3174/ajnr.A3529
Lang S, Hoelter P, Birkhold AI, et al. Quantitative and qualitative comparison of 4D-DSA with 3D-DSA using computational fluid dynamics simulations in cerebral aneurysms. AJNR Am J Neuroradiol. 2019;40(9):1505-1510. doi:10.3174/ajnr.A6172
Buehler M, Slagowski JM, Mistretta CA, Strother CM, Speidel MA. 4D DSA reconstruction using tomosynthesis projections. In: medical imaging 2017. Phys Med Imaging. 2017;10132:595-606. doi:10.1117/12.2255197. SPIE.
Go S, Kamaya A, Jeffrey B, Desser TS. Duplex doppler ultrasound of the hepatic artery: a window to diagnosis of diffuse liver pathology. Ultrasound Q. 2016;32(1):58-66. doi:10.1097/RUQ.0000000000000166
El-Nakeep S, Ziska SK. Doppler Liver Assessment, Protocols, And Interpretation Of Results. In: StatPearls. StatPearls Publishing; 2023. Accessed May 4, 2023 http://www.ncbi.nlm.nih.gov/books/NBK567725/
Krejza J, Mariak Z, Babikian VL. Importance of angle correction in the measurement of blood flow velocity with transcranial doppler sonography. AJNR Am J Neuroradiol. 2001;22(9):1743-1747.
Revzin MV, Imanzadeh A, Menias C, et al. Optimizing image quality when evaluating blood flow at doppler US: a tutorial. Radiographics. 2019;39(5):1501-1523. doi:10.1148/rg.2019180055
Shpilfoygel SD, Close RA, Valentino DJ, Duckwiler GR. X-ray videodensitometric methods for blood flow and velocity measurement: a critical review of literature. Med Phys. 2000;27(9):2008-2023. doi:10.1118/1.1288669
Periyasamy S, Hoffman CA, Longhurst C, et al. A quantitative digital subtraction angiography technique for characterizing reduction in hepatic arterial blood flow during transarterial embolization. Cardiovasc Intervent Radiol. 2021;44(2):310-317. doi:10.1007/s00270-020-02640-0
Hoffman C, Periyasamy S, Longhurst C, et al. A technique for intra-procedural blood velocity quantitation using time-resolved 2D digital subtraction angiography. CVIR Endovasc. 2021;4(1):11. doi:10.1186/s42155-020-00199-y
Whitehead JF, Hoffman CA, Periyasamy S, Laeseke PF, Speidel MA, Wagner MG, A motion compensated approach to quantitative digital subtraction angiography. In: Medical Imaging 2022. Phys Med Imaging. 2022; 12031. doi:10.1117/12.2611816
de Ruiter QM, Gijsberts CM, Hazenberg CE, Moll FL, van Herwaarden JA. Radiation awareness for endovascular abdominal aortic aneurysm repair in the hybrid operating room. An instant patient risk chart for daily practice. J Endovasc Ther. 2017;24(3):425-434. doi:10.1177/1526602817697188
Pearl MS, Torok C, Wang J, Wyse E, Mahesh M, Gailloud P. Practical techniques for reducing radiation exposure during cerebral angiography procedures. J NeuroInterv Surg. 2015;7(2):141-145. doi:10.1136/neurintsurg-2013-010982
Zhang F, Lu Z, Wang F. Advances in the pathogenesis and prevention of contrast-induced nephropathy. Life Sci. 2020;259:118379. doi:10.1016/j.lfs.2020.118379
Summers PE, Holdsworth DW, Nikolov HN, Rutt BK, Drangova M. Multisite trial of MR flow measurement: phantom and protocol design. J Magn Reson Imaging. 2005;21(5):620-631. doi:10.1002/jmri.20311
Wagner MG, Whitehead JF, Periyasamy S, Laeseke PF, Speidel MA. Spatiotemporal frequency domain analysis for blood velocity measurement during embolization procedures. Med Phys. 2023. doi:10.1002/mp.16715
Kito Y, Nagino M, Nimura Y. Doppler sonography of hepatic arterial blood flow velocity after percutaneous transhepatic portal vein embolization. Am J Roentgenol. 2001;176(4):909-912. doi:10.2214/ajr.176.4.1760909
Kishore SA, Bajwa R, Madoff DC. Embolotherapeutic strategies for hepatocellular carcinoma: 2020 update. Cancers. 2020;12(4):791. doi:10.3390/cancers12040791
Baz AAM, Mohamed RM, El-kaffas KH. Doppler ultrasound in liver cirrhosis: correlation of hepatic artery and portal vein measurements with model for end-stage liver disease score in Egypt. Egypt J Radiol Nucl Med. 2020;51(1):228. doi:10.1186/s43055-020-00344-6
Popov D, Krasteva R, Ivanova R, Mateva L, Krastev Z. Doppler parameters of hepatic and renal hemodynamics in patients with liver cirrhosis. Int J Nephrol. 2012;2012:961654. doi:10.1155/2012/961654
Park HS, Desser TS, Jeffrey RB, Kamaya A. Doppler ultrasound in liver cirrhosis: correlation of hepatic artery and portal vein measurements with model for end-stage liver disease score. J Ultrasound Med. 2017;36(4):725-730. doi:10.7863/ultra.16.03107
Săftoiu A, Ciurea T, Gorunescu F. Hepatic arterial blood flow in large hepatocellular carcinoma with or without portal vein thrombosis: assessment by transcutaneous duplex Doppler sonography. Eur J Gastroenterol Hepatol. 2002;14(2):167-176. doi:10.1097/00042737-200202000-00011