The circadian clock gene bmal1 is necessary for co-ordinated circatidal rhythms in the marine isopod Eurydice pulchra (Leach).
Journal
PLoS genetics
ISSN: 1553-7404
Titre abrégé: PLoS Genet
Pays: United States
ID NLM: 101239074
Informations de publication
Date de publication:
Oct 2023
Oct 2023
Historique:
received:
10
02
2023
accepted:
09
10
2023
revised:
31
10
2023
medline:
2
11
2023
pubmed:
19
10
2023
entrez:
19
10
2023
Statut:
epublish
Résumé
Circadian clocks in terrestrial animals are encoded by molecular feedback loops involving the negative regulators PERIOD, TIMELESS or CRYPTOCHROME2 and positive transcription factors CLOCK and BMAL1/CYCLE. The molecular basis of circatidal (~12.4 hour) or other lunar-mediated cycles (~15 day, ~29 day), widely expressed in coastal organisms, is unknown. Disrupting circadian clockworks does not appear to affect lunar-based rhythms in several organisms that inhabit the shoreline suggesting a molecular independence of the two cycles. Nevertheless, pharmacological inhibition of casein kinase 1 (CK1) that targets PERIOD stability in mammals and flies, affects both circadian and circatidal phenotypes in Eurydice pulchra (Ep), the speckled sea-louse. Here we show that these drug inhibitors of CK1 also affect the phosphorylation of EpCLK and EpBMAL1 and disrupt EpCLK-BMAL1-mediated transcription in Drosophila S2 cells, revealing a potential link between these two positive circadian regulators and circatidal behaviour. We therefore performed dsRNAi knockdown of Epbmal1 as well as the major negative regulator in Eurydice, Epcry2 in animals taken from the wild. Epcry2 and Epbmal1 knockdown disrupted Eurydice's circadian phenotypes of chromatophore dispersion, tim mRNA cycling and the circadian modulation of circatidal swimming, as expected. However, circatidal behaviour was particularly sensitive to Epbmal1 knockdown with consistent effects on the power, amplitude and rhythmicity of the circatidal swimming cycle. Thus, three Eurydice negative circadian regulators, EpCRY2, in addition to EpPER and EpTIM (from a previous study), do not appear to be required for the expression of robust circatidal behaviour, in contrast to the positive regulator EpBMAL1. We suggest a neurogenetic model whereby the positive circadian regulators EpBMAL1-CLK are shared between circadian and circatidal mechanisms in Eurydice but circatidal rhythms require a novel, as yet unknown negative regulator.
Identifiants
pubmed: 37856540
doi: 10.1371/journal.pgen.1011011
pii: PGENETICS-D-23-00040
pmc: PMC10617734
doi:
Substances chimiques
ARNTL Transcription Factors
0
CLOCK Proteins
EC 2.3.1.48
Drosophila Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e1011011Commentaires et corrections
Type : ErratumIn
Informations de copyright
Copyright: © 2023 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Sci Rep. 2017 Jun 19;7(1):3780
pubmed: 28630482
J Comp Neurol. 2011 Feb 15;519(3):562-75
pubmed: 21192084
Curr Biol. 2023 May 22;33(10):1867-1882.e5
pubmed: 36977416
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W332-9
pubmed: 20444868
Methods Mol Biol. 2022;2482:385-394
pubmed: 35610441
Neuron. 2012 Apr 26;74(2):246-60
pubmed: 22542179
Cell. 1998 Jul 10;94(1):97-107
pubmed: 9674431
Nat Rev Mol Cell Biol. 2007 Feb;8(2):139-48
pubmed: 17245414
Cell Rep. 2013 Oct 17;5(1):99-113
pubmed: 24075994
Cell. 1998 May 29;93(5):805-14
pubmed: 9630224
Genes Brain Behav. 2005 Mar;4(2):65-76
pubmed: 15720403
Biol Lett. 2012 Aug 23;8(4):488-91
pubmed: 22399786
Nat Genet. 2006 Mar;38(3):369-74
pubmed: 16474407
Cell. 2000 Dec 22;103(7):1009-17
pubmed: 11163178
PLoS One. 2015 Sep 22;10(9):e0138661
pubmed: 26394143
Proc Natl Acad Sci U S A. 2017 Oct 10;114(41):10972-10977
pubmed: 28973907
Curr Biol. 2013 Oct 7;23(19):1863-73
pubmed: 24076244
Mol Cell Biol. 2009 Mar;29(6):1452-8
pubmed: 19139270
Mol Biol Evol. 2007 Apr;24(4):948-55
pubmed: 17244599
Front Physiol. 2020 Nov 26;11:612510
pubmed: 33324245
PLoS One. 2012;7(2):e32092
pubmed: 22384150
Chronobiol Int. 1996 Aug;13(3):153-61
pubmed: 8874979
Cell. 1998 Jul 10;94(1):83-95
pubmed: 9674430
Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6178-83
pubmed: 16603629
Cell. 1999 Dec 10;99(6):661-71
pubmed: 10612401
Front Physiol. 2019 Oct 18;10:1325
pubmed: 31681024
Mol Cell Biol. 1997 Jul;17(7):3687-93
pubmed: 9199302
PLoS Genet. 2014 Sep 11;10(9):e1004628
pubmed: 25210865
Curr Biol. 2013 Oct 21;23(20):R921-3
pubmed: 24156810
Methods Mol Biol. 2022;2482:373-383
pubmed: 35610440
Genes Dev. 2006 Mar 15;20(6):723-33
pubmed: 16543224
Proc Natl Acad Sci U S A. 2000 Mar 28;97(7):3608-13
pubmed: 10725392
Curr Opin Neurobiol. 2013 Oct;23(5):724-31
pubmed: 23731779
Nat Rev Genet. 2017 Mar;18(3):164-179
pubmed: 27990019
J Pharmacol Exp Ther. 2009 Aug;330(2):430-9
pubmed: 19458106
Proc Natl Acad Sci U S A. 1998 May 12;95(10):5474-9
pubmed: 9576906
Neuron. 2008 Apr 10;58(1):78-88
pubmed: 18400165
J Insect Physiol. 2014 Sep;68:16-22
pubmed: 24995838
Mar Freshw Behav Physiol. 2016;49(2):75-91
pubmed: 27559270
Genetics. 2017 Apr;205(4):1373-1397
pubmed: 28360128