Bilirubin impacts microglial autophagy via the Akt-mTOR signaling pathway.


Journal

Journal of neurochemistry
ISSN: 1471-4159
Titre abrégé: J Neurochem
Pays: England
ID NLM: 2985190R

Informations de publication

Date de publication:
Nov 2023
Historique:
revised: 03 09 2023
received: 11 02 2023
accepted: 26 09 2023
medline: 13 11 2023
pubmed: 20 10 2023
entrez: 20 10 2023
Statut: ppublish

Résumé

Bilirubin encephalopathy is a severe complication of neonatal hyperbilirubinemia. With elevation of serum unconjugated bilirubin (UCB) levels, UCB crosses the blood-brain barrier and possibly leads to neurological dysfunction. Neuroinflammation is recognized as a prominent pathological feature in bilirubin encephalopathy. Recent studies have suggested that autophagy plays a crucial role in the inflammatory response. However, the potential effect of microglial autophagy in the pathogenesis of bilirubin encephalopathy remains uncertain. The in vitro findings verified that in primary cultured microglia, UCB significantly reduced the ratio of LC3B-II to LC3B-I and downregulated the expression of ATG5, Beclin-1, and ATG7, while increasing the expression of p62/SQSTM1. The results showed that UCB could decrease the number of mCherry-EGFP-LC3 positive puncta, even when chloroquine (CQ) was applied to block the microglial autophagy flux. Mechanistically, UCB was found to upregulate the expression of TLR4 and increase the phosphorylation levels of Akt and mammalian target of rapamycin (mTOR). Promoting microglial autophagy by treatment with Rapamycin (RAPA), an mTOR inhibitor, decreased the levels of NOD-like receptor protein 3 (NLRP3) inflammasome components and IL-1β, rescued microglial overactivation, and improved neurological functions. These data indicated that UCB could impact microglial autophagy via the Akt-mTOR signaling pathway and synergistically promote neuroinflammatory responses. Enhancing autophagy might disrupt the assembly of NLRP3 inflammasome, attenuate UCB-induced neuroinflammation, and improve the prognosis of model rats with bilirubin encephalopathy. In conclusion, this study implies that regulating microglial autophagy might be a promising therapeutic strategy for bilirubin encephalopathy.

Identifiants

pubmed: 37858960
doi: 10.1111/jnc.15984
doi:

Substances chimiques

Proto-Oncogene Proteins c-akt EC 2.7.11.1
Bilirubin RFM9X3LJ49
Inflammasomes 0
NLR Family, Pyrin Domain-Containing 3 Protein 0
TOR Serine-Threonine Kinases EC 2.7.11.1
mTOR protein, rat EC 2.7.1.1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

582-599

Subventions

Organisme : National Natural Science Foundation of China
ID : 81971426
Organisme : Postgraduate Research Innovation Project of Chongqing
ID : CYB22213
Organisme : Postgraduate Research Innovation Project of Chongqing
ID : CYS21227
Organisme : Key Project for Technological Innovation and Application Development of Chongqing
ID : CSTB2022TIAD-KPX0147
Organisme : Science and Technology Research Program of Chongqing Education Commission
ID : KJZD-M202300403

Informations de copyright

© 2023 International Society for Neurochemistry.

Références

Al-Bari, M. A. A., & Xu, P. (2020). Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Annals of the New York Academy of Sciences, 1467(1), 3-20.
Berglund, R., Guerreiro-Cacais, A. O., Adzemovic, M. Z., Zeitelhofer, M., Lund, H., Ewing, E., Ruhrmann, S., Nutma, E., Parsa, R., Thessen-Hedreul, M., Amor, S., Harris, R. A., Olsson, T., & Jagodic, M. (2020). Microglial autophagy-associated phagocytosis is essential for recovery from neuroinflammation. Science Immunology, 5(52), eabb5077. https://doi.org/10.1126/sciimmunol.abb5077
Biasizzo, M., & Kopitar-Jerala, N. (2020). Interplay between NLRP3 inflammasome and autophagy. Frontiers in Immunology, 11, 591803. https://doi.org/10.3389/fimmu.2020.591803
Cheng, J., Liao, Y., Dong, Y., Hu, H., Yang, N., Kong, X., Li, S., Li, X., Guo, J., Qin, L., Yu, J., Ma, C., Li, J., Li, M., Tang, B., & Yuan, Z. (2020). Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice. Autophagy, 16(12), 2193-2205.
Cho, M.-H., Cho, K., Kang, H.-J., Jeon, E.-Y., Kim, H.-S., Kwon, H.-J., Kim, H.-M., Kim, D.-H., & Yoon, S.-Y. (2014). Autophagy in microglia degrades extracellular β-amyloid fibrils and regulates the NLRP3 inflammasome. Autophagy, 10(10), 1761-1775.
Chu, L., Xue, X., & Qiao, J. (2020). Efficacy of intermittent phototherapy versus continuous phototherapy for treatment of neonatal hyperbilirubinaemia: A systematic review and meta-analysis. Journal of Advanced Nursing, 77(1), 12-22.
Colonna, M., & Butovsky, O. (2017). Microglia function in the central nervous system during health and neurodegeneration. Annual Review of Immunology, 35(1), 441-468.
Cui, Y., Yang, M., Wang, Y., Ren, J., Lin, P., Cui, C., Song, J., He, Q., Hu, H., Wang, K., & Sun, Y. (2021). Melatonin prevents diabetes-associated cognitive dysfunction from microglia-mediated neuroinflammation by activating autophagy via TLR4/Akt/mTOR pathway. The FASEB Journal, 35(4), e21485.
Deliktaş, M., Ergin, H., Demiray, A., Akça, H., Özdemir, Ö. M. A., & Özdemir, M. B. (2018). Caffeine prevents bilirubin-induced cytotoxicity in cultured newborn rat astrocytes. The Journal of Maternal-Fetal & Neonatal Medicine, 32(11), 1813-1819.
Deretic, V. (2021). Autophagy in inflammation, infection, and immunometabolism. Immunity, 54(3), 437-453.
Deretic, V., & Levine, B. (2018). Autophagy balances inflammation in innate immunity. Autophagy, 14(2), 243-251.
Ding, W., Ding, Z., Wang, Y., Zhu, Y., Gao, Q., Cao, W., & Du, R. (2020). Evodiamine attenuates experimental colitis injury via activating autophagy and inhibiting NLRP3 inflammasome assembly. Frontiers in Pharmacology, 11, 573870. https://doi.org/10.3389/fphar.2020.573870
Feng, J., Li, M., Wei, Q., Li, S., Song, S., & Hua, Z. (2018). Unconjugated bilirubin induces pyroptosis in cultured rat cortical astrocytes. Journal of Neuroinflammation, 15(1), 23.
Han, X., Sun, S., Sun, Y., Song, Q., Zhu, J., Song, N., Chen, M., Sun, T., Xia, M., Ding, J., Lu, M., Yao, H., & Hu, G. (2019). Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: Implications for Parkinson disease. Autophagy, 15(11), 1860-1881.
Hansen, T. W. R., Wong, R. J., & Stevenson, D. K. (2020). Molecular physiology and pathophysiology of bilirubin handling by the blood, liver, intestine, and brain in the newborn. Physiological Reviews, 100(3), 1291-1346.
He, C., Feng, J., Huang, H., & Hua, Z. (2019). Caspase-1 involves in bilirubin-induced injury of cultured rat cortical neurons. Pediatric Research, 86(4), 492-499.
He, T., Li, W., Song, Y., Li, Z., Tang, Y., Zhang, Z., & Yang, G.-Y. (2020). Sestrin2 regulates microglia polarization through mTOR-mediated autophagic flux to attenuate inflammation during experimental brain ischemia. Journal of Neuroinflammation, 17(1), 329.
Hickman, S., Izzy, S., Sen, P., Morsett, L., & El Khoury, J. (2018). Microglia in neurodegeneration. Nature Neuroscience, 21(10), 1359-1369.
Ji, J., Xue, T. F., Guo, X. D., Yang, J., Guo, R. B., Wang, J., Huang, J. Y., Zhao, X. J., & Sun, X. L. (2018). Antagonizing peroxisome proliferator-activated receptor γ facilitates M1-to-M2 shift of microglia by enhancing autophagy via the LKB1-AMPK signaling pathway. Aging Cell, 17(4), e12774.
Jin, M.-M., Wang, F., Qi, D., Liu, W.-W., Gu, C., Mao, C.-J., Yang, Y.-P., Zhao, Z., Hu, L.-F., & Liu, C.-F. (2018). A critical role of autophagy in regulating microglia polarization in neurodegeneration. Frontiers in Aging Neuroscience, 10, 378. https://doi.org/10.3389/fnagi.2018.00378
Kim, H. J., Cho, M. H., Shim, W. H., Kim, J. K., Jeon, E. Y., Kim, D. H., & Yoon, S. Y. (2016). Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Molecular Psychiatry, 22(11), 1576-1584.
Kwon, H. S., & Koh, S.-H. (2020). Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Translational Neurodegeneration, 9(1), 42.
Lee, J.-W., Nam, H., Kim, L. E., Jeon, Y., Min, H., Ha, S., Lee, Y., Kim, S.-Y., Lee, S. J., Kim, E.-K., & Yu, S.-W. (2018). TLR4 (toll-like receptor 4) activation suppresses autophagy through inhibition of FOXO3 and impairs phagocytic capacity of microglia. Autophagy, 15(5), 753-770.
Leng, F., & Edison, P. (2020). Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nature Reviews Neurology, 17(3), 157-172.
Li, M., Song, S., Li, S., Feng, J., & Hua, Z. (2015). The blockade of NF-κB activation by a specific inhibitory peptide has a strong neuroprotective role in a Sprague-Dawley rat kernicterus model. Journal of Biological Chemistry, 290(50), 30042-30052.
Li, S., Huang, H., Wei, Q., He, C., Feng, J., Wang, Y., Li, M., Zhang, Q., Xia, X., & Hua, Z. (2021). Depression of pyroptosis by inhibiting caspase-1 activation improves neurological outcomes of kernicterus model rats. ACS Chemical Neuroscience, 12(15), 2929-2939.
Olusanya, B. O., Kaplan, M., & Hansen, T. W. R. (2018). Neonatal hyperbilirubinaemia: A global perspective. The Lancet Child & Adolescent Health, 2(8), 610-620.
Peng, J., Xie, Y., Pang, J., Wu, Y., Zhou, J., Gu, L., Guo, K., Zhang, L., Xie, B., Yin, S., Sun, X., Chen, L., & Jiang, Y. (2023). Toll-like receptor 4-mediated microglial inflammation exacerbates early white matter injury following experimental subarachnoid hemorrhage. Journal of Neurochemistry, 166(2), 280-293.
Plaza-Zabala, A., Sierra-Torre, V., & Sierra, A. (2017). Autophagy and microglia: Novel partners in neurodegeneration and aging. International Journal of Molecular Sciences, 18(3), 598. https://doi.org/10.3390/ijms18030598
Qin, Y., Qiu, J., Wang, P., Liu, J., Zhao, Y., Jiang, F., & Lou, H. (2021). Impaired autophagy in microglia aggravates dopaminergic neurodegeneration by regulating NLRP3 inflammasome activation in experimental models of Parkinson's disease. Brain, Behavior, and Immunity, 91, 324-338.
Saitoh, T., Fujita, N., Jang, M. H., Uematsu, S., Yang, B.-G., Satoh, T., Omori, H., Noda, T., Yamamoto, N., Komatsu, M., Tanaka, K., Kawai, T., Tsujimura, T., Takeuchi, O., Yoshimori, T., & Akira, S. (2008). Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature, 456(7219), 264-268.
Schiavon, E., Smalley, J. L., Newton, S., Greig, N. H., & Forsythe, I. D. (2018). Neuroinflammation and ER-stress are key mechanisms of acute bilirubin toxicity and hearing loss in a mouse model. PLoS ONE, 13(8), e0201022.
Shao, S., Xu, C.-B., Chen, C.-J., Shi, G.-N., Guo, Q.-L., Zhou, Y., Wei, Y.-Z., Wu, L., Shi, J.-G., & Zhang, T.-T. (2021). Divanillyl sulfone suppresses NLRP3 inflammasome activation via inducing mitophagy to ameliorate chronic neuropathic pain in mice. Journal of Neuroinflammation, 18(1), 142.
Shibutani, S. T., Saitoh, T., Nowag, H., Münz, C., & Yoshimori, T. (2015). Autophagy and autophagy-related proteins in the immune system. Nature Immunology, 16(10), 1014-1024.
Singh, D. (2022). Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer's disease. Journal of Neuroinflammation, 19(1), 206.
Song, S., Hu, Y., Gu, X., Si, F., & Hua, Z. (2014). A novel newborn rat kernicterus model created by injecting a bilirubin solution into the cisterna magna. PLoS ONE, 9(5), e96171.
Swanson, K. V., Deng, M., & Ting, J. P. Y. (2019). The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nature Reviews Immunology, 19(8), 477-489.
Tu, H. Y., Yuan, B. S., Hou, X. O., Zhang, X. J., Pei, C. S., Ma, Y. T., Yang, Y. P., Fan, Y., Qin, Z. H., Liu, C. F., & Hu, L. F. (2021). α-Synuclein suppresses microglial autophagy and promotes neurodegeneration in a mouse model of Parkinson's disease. Aging Cell, 20(12), e13522.
Vaz, A. R., Falcão, A. S., Scarpa, E., Semproni, C., & Brites, D. (2020). Microglia susceptibility to free bilirubin is age-dependent. Frontiers in Pharmacology, 11, 1012. https://doi.org/10.3389/fphar.2020.01012
Vodret, S., Bortolussi, G., Iaconcig, A., Martinelli, E., Tiribelli, C., & Muro, A. F. (2018). Attenuation of neuro-inflammation improves survival and neurodegeneration in a mouse model of severe neonatal hyperbilirubinemia. Brain, Behavior, and Immunity, 70, 166-178.
Vodret, S., Bortolussi, G., Jašprová, J., Vitek, L., & Muro, A. F. (2017). Inflammatory signature of cerebellar neurodegeneration during neonatal hyperbilirubinemia in Ugt1−/− mouse model. Journal of Neuroinflammation, 14(1), 64.
Wang, H., He, Y., Sun, Z., Ren, S., Liu, M., Wang, G., & Yang, J. (2022). Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression. Journal of Neuroinflammation, 19(1), 132.
Wang, S., Yuan, Y.-H., Chen, N.-H., & Wang, H.-B. (2019). The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in Parkinson's disease. International Immunopharmacology, 67, 458-464.
Woodburn, S. C., Bollinger, J. L., & Wohleb, E. S. (2021). The semantics of microglia activation: Neuroinflammation, homeostasis, and stress. Journal of Neuroinflammation, 18(1), 258.
Wu, C.-H., Gan, C. H., Li, L.-H., Chang, J.-C., Chen, S.-T., Menon, M. P., Cheng, S.-M., Yang, S.-P., Ho, C.-L., Chernikov, O. V., Lin, C.-H., Lam, Y., & Hua, K.-F. (2020). A synthetic small molecule F240B decreases NLRP3 inflammasome activation by autophagy induction. Frontiers in Immunology, 11, 607564. https://doi.org/10.3389/fimmu.2020.607564
Xu, Y., Propson, N. E., Du, S., Xiong, W., & Zheng, H. (2021). Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading. Proceedings of the National Academy of Sciences of the United States of America, 118(27), e2023418118. https://doi.org/10.1073/pnas.2023418118
Ye, X., Zhu, M., Che, X., Wang, H., Liang, X.-J., Wu, C., Xue, X., & Yang, J. (2020). Lipopolysaccharide induces neuroinflammation in microglia by activating the MTOR pathway and downregulating Vps34 to inhibit autophagosome formation. Journal of Neuroinflammation, 17(1), 18.
Zhou, M., Cornell, J., Salinas, S., & Huang, H.-Y. (2022). Microglia regulation of synaptic plasticity and learning and memory. Neural Regeneration Research, 17(4), 705-716.
Zhu, Z., Yang, C., Iyaswamy, A., Krishnamoorthi, S., Sreenivasmurthy, S. G., Liu, J., Wang, Z., Tong, B. C.-K., Song, J., Lu, J., Cheung, K.-H., & Li, M. (2019). Balancing mTOR signaling and autophagy in the treatment of Parkinson's disease. International Journal of Molecular Sciences, 20(3), 728. https://doi.org/10.3390/ijms20030728

Auteurs

Ling Li (L)

Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.
Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.

Siyu Li (S)

Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.
Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.

Zhifan Pan (Z)

China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.
Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.

Yan Zhang (Y)

China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.
Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.

Ziyu Hua (Z)

Department of Neonatology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH