Inborn errors of immunity: an expanding universe of disease and genetic architecture.


Journal

Nature reviews. Genetics
ISSN: 1471-0064
Titre abrégé: Nat Rev Genet
Pays: England
ID NLM: 100962779

Informations de publication

Date de publication:
20 Oct 2023
Historique:
accepted: 06 09 2023
medline: 21 10 2023
pubmed: 21 10 2023
entrez: 20 10 2023
Statut: aheadofprint

Résumé

Inborn errors of immunity (IEIs) are generally considered to be rare monogenic disorders of the immune system that cause immunodeficiency, autoinflammation, autoimmunity, allergy and/or cancer. Here, we discuss evidence that IEIs need not be rare disorders or exclusively affect the immune system. Namely, an increasing number of patients with IEIs present with severe dysregulations of the central nervous, digestive, renal or pulmonary systems. Current challenges in the diagnosis of IEIs that result from the segregated practice of specialized medicine could thus be mitigated, in part, by immunogenetic approaches. Starting with a brief historical overview of IEIs, we then discuss the technological advances that are facilitating the immunogenetic study of IEIs, progress in understanding disease penetrance in IEIs, the expanding universe of IEIs affecting distal organ systems and the future of genetic, biochemical and medical discoveries in this field.

Identifiants

pubmed: 37863939
doi: 10.1038/s41576-023-00656-z
pii: 10.1038/s41576-023-00656-z
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2023. Springer Nature Limited.

Références

Tangye, S. G. et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 40, 24–64 (2020).
pubmed: 31953710 pmcid: 7082301 doi: 10.1007/s10875-019-00737-x
Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020).
pubmed: 33108101 pmcid: 7847551 doi: 10.1056/NEJMoa2026834
Bousfiha, A. et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J. Clin. Immunol. 42, 1508–1520 (2022).
pubmed: 36198931 doi: 10.1007/s10875-022-01352-z
Tangye, S. G. et al. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 42, 1473–1507 (2022). This work presents the most up-to-date report of the classification of IEIs and their associated features.
pubmed: 35748970 pmcid: 9244088 doi: 10.1007/s10875-022-01289-3
Fischer, A. Gene therapy for inborn errors of immunity: past, present and future. Nat. Rev. Immunol. 23, 397–408 (2023). This article reviews the development of gene therapies for IEIs and discusses the next steps for the field.
pubmed: 36434109 doi: 10.1038/s41577-022-00800-6
von Verschuer, O. Twin research from the time of Francis Galton to the present-day. Proc. R. Soc. Lond. B 128, 62–81 (1939).
doi: 10.1098/rspb.1939.0044
Boisson-Dupuis, S. The monogenic basis of human tuberculosis. Hum. Genet. 139, 1001–1009 (2020).
pubmed: 32055999 pmcid: 7275886 doi: 10.1007/s00439-020-02126-6
Bruton, O. C. Agammaglobulinemia. Pediatrics 9, 722–728 (1952).
pubmed: 14929630 doi: 10.1542/peds.9.6.722
Ochs, H. D. & Hitzig, W. H. History of primary immunodeficiency diseases. Curr. Opin. Allergy Clin. Immunol. 12, 577–587 (2012). This article presents a comprehensive history of the field of IEIs.
pubmed: 23095909 doi: 10.1097/ACI.0b013e32835923a6
Bruton, O. C., Apt, L., Gitlin, D. & Janeway, C. A. Absence of serum gamma globulins. AMA Am. J. Dis. Child. 84, 632–636 (1952).
pubmed: 12984834
Vetrie, D. et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361, 226–233 (1993).
pubmed: 8380905 doi: 10.1038/361226a0
Hood, L. E., Hunkapiller, M. W. & Smith, L. M. Automated DNA sequencing and analysis of the human genome. Genomics 1, 201–212 (1987).
pubmed: 3328736 doi: 10.1016/0888-7543(87)90046-2
Benichou, B. & Strominger, J. L. Class II-antigen-negative patient and mutant B-cell lines represent at least three, and probably four, distinct genetic defects defined by complementation analysis. Proc. Natl Acad. Sci. USA 88, 4285–4288 (1991).
pubmed: 1852002 pmcid: 51643 doi: 10.1073/pnas.88.10.4285
Lisowska-Grospierre, B., Fondaneche, M. C., Rols, M. P., Griscelli, C. & Fischer, A. Two complementation groups account for most cases of inherited MHC class II deficiency. Hum. Mol. Genet. 3, 953–958 (1994).
pubmed: 7951244 doi: 10.1093/hmg/3.6.953
Seidl, C., Saraiya, C., Osterweil, Z., Fu, Y. P. & Lee, J. S. Genetic complexity of regulatory mutants defective for HLA class II gene expression. J. Immunol. 148, 1576–1584 (1992).
pubmed: 1538137 doi: 10.4049/jimmunol.148.5.1576
Gong, W. et al. A transcription map of the DiGeorge and velo-cardio-facial syndrome minimal critical region on 22q11. Hum. Mol. Genet. 5, 789–800 (1996).
pubmed: 8776594 doi: 10.1093/hmg/5.6.789
de Saint Basile, G. et al. Close linkage of the locus for X chromosome-linked severe combined immunodeficiency to polymorphic DNA markers in Xq11-q13. Proc. Natl Acad. Sci. USA 84, 7576–7579 (1987).
doi: 10.1073/pnas.84.21.7576
Noguchi, M. et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157 (1993).
pubmed: 8462096 doi: 10.1016/0092-8674(93)90167-O
Puck, J. M. et al. The interleukin-2 receptor gamma chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum. Mol. Genet. 2, 1099–1104 (1993).
pubmed: 8401490 doi: 10.1093/hmg/2.8.1099
Baehner, R. L. et al. DNA linkage analysis of X chromosome-linked chronic granulomatous disease. Proc. Natl Acad. Sci. USA 83, 3398–3401 (1986).
pubmed: 3010296 pmcid: 323521 doi: 10.1073/pnas.83.10.3398
Royer-Pokora, B. et al. Cloning the gene for an inherited human disorder — chronic granulomatous disease — on the basis of its chromosomal location. Nature 322, 32–38 (1986).
pubmed: 2425263 doi: 10.1038/322032a0
Kwan, S. P. et al. Localization of the gene for the Wiskott–Aldrich syndrome between two flanking markers, TIMP and DXS255, on Xp11.22–Xp11.3. Genomics 10, 29–33 (1991).
pubmed: 1675197 doi: 10.1016/0888-7543(91)90480-3
Schwarz, K. et al. RAG mutations in human B cell-negative SCID. Science 274, 97–99 (1996).
pubmed: 8810255 doi: 10.1126/science.274.5284.97
Hsu, A. P. et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 118, 2653–2655 (2011).
pubmed: 21670465 pmcid: 3172785 doi: 10.1182/blood-2011-05-356352
Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361, 2046–2055 (2009).
pubmed: 19776401 pmcid: 2965730 doi: 10.1056/NEJMoa0905506
Arai, T. et al. Copy number variations due to large genomic deletion in X-linked chronic granulomatous disease. PLoS ONE 7, e27782 (2012).
pubmed: 22383943 pmcid: 3287986 doi: 10.1371/journal.pone.0027782
Yamada, M. et al. Determination of the deletion breakpoints in two patients with contiguous gene syndrome encompassing CYBB gene. Eur. J. Med. Genet. 53, 383–388 (2010).
pubmed: 20813210 doi: 10.1016/j.ejmg.2010.08.003
Lander, E. S. & Botstein, D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).
pubmed: 2884728 doi: 10.1126/science.2884728
Mueller, R. F. & Bishop, D. T. Autozygosity mapping, complex consanguinity, and autosomal recessive disorders. J. Med. Genet. 30, 798–799 (1993).
pubmed: 8411082 pmcid: 1016549 doi: 10.1136/jmg.30.9.798
Byun, M. et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J. Exp. Med. 207, 2307–2312 (2010).
pubmed: 20876309 pmcid: 2964585 doi: 10.1084/jem.20101597
Bogunovic, D. et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337, 1684–1688 (2012).
pubmed: 22859821 pmcid: 3507439 doi: 10.1126/science.1224026
Zhang, X. et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517, 89–93 (2015).
pubmed: 25307056 doi: 10.1038/nature13801
Ombrello, M. J. et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N. Engl. J. Med. 366, 330–338 (2012).
pubmed: 22236196 pmcid: 3298368 doi: 10.1056/NEJMoa1102140
Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat. Immunol. 13, 1178–1186 (2012).
pubmed: 23104095 pmcid: 3514453 doi: 10.1038/ni.2457
Morup, S. B. et al. Added value of reanalysis of whole exome- and whole genome sequencing data from patients suspected of primary immune deficiency using an extended gene panel and structural variation calling. Front. Immunol. 13, 906328 (2022).
pubmed: 35874679 pmcid: 9302041 doi: 10.3389/fimmu.2022.906328
Similuk, M. N. et al. Clinical exome sequencing of 1000 families with complex immune phenotypes: toward comprehensive genomic evaluations. J. Allergy Clin. Immunol. 150, 947–954 (2022).
pubmed: 35753512 pmcid: 9547837 doi: 10.1016/j.jaci.2022.06.009
Boisson-Dupuis, S. et al. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci. Immunol. 3, eaau8714 (2018).
pubmed: 30578352 pmcid: 6341984 doi: 10.1126/sciimmunol.aau8714
Bastard, P. et al. A loss-of-function IFNAR1 allele in Polynesia underlies severe viral diseases in homozygotes. J. Exp. Med. 219, e20220028 (2022).
pubmed: 35442418 pmcid: 9026234 doi: 10.1084/jem.20220028
Duncan, C. J. A. et al. Life-threatening viral disease in a novel form of autosomal recessive IFNAR2 deficiency in the Arctic. J. Exp. Med. 219, e20212427 (2022).
pubmed: 35442417 pmcid: 9026249 doi: 10.1084/jem.20212427
Constantinescu, A. E. et al. A framework for research into continental ancestry groups of the UK Biobank. Hum. Genomics 16, 3 (2022).
pubmed: 35093177 pmcid: 8800339 doi: 10.1186/s40246-022-00380-5
Gurdasani, D., Barroso, I., Zeggini, E. & Sandhu, M. S. Genomics of disease risk in globally diverse populations. Nat. Rev. Genet. 20, 520–535 (2019).
pubmed: 31235872 doi: 10.1038/s41576-019-0144-0
Manolio, T. A. Using the data we have: improving diversity in genomic research. Am. J. Hum. Genet. 105, 233–236 (2019).
pubmed: 31374201 pmcid: 6698933 doi: 10.1016/j.ajhg.2019.07.008
Meyts, I. et al. Exome and genome sequencing for inborn errors of immunity. J. Allergy Clin. Immunol. 138, 957–969 (2016).
pubmed: 27720020 pmcid: 5074686 doi: 10.1016/j.jaci.2016.08.003
Austin-Tse, C. A. et al. Best practices for the interpretation and reporting of clinical whole genome sequencing. npj Genom. Med. 7, 27 (2022).
pubmed: 35395838 pmcid: 8993917 doi: 10.1038/s41525-022-00295-z
Bucciol, G., Van Nieuwenhove, E., Moens, L., Itan, Y. & Meyts, I. Whole exome sequencing in inborn errors of immunity: use the power but mind the limits. Curr. Opin. Allergy Clin. Immunol. 17, 421–430 (2017).
pubmed: 28938278 doi: 10.1097/ACI.0000000000000398
Gruber, C. & Bogunovic, D. Incomplete penetrance in primary immunodeficiency: a skeleton in the closet. Hum. Genet. 139, 745–757 (2020). This article reviews decades of reports to present four principles of incomplete penetrance in primary immunodeficiencies to help categorize and explain these occurrences.
pubmed: 32067110 pmcid: 7275875 doi: 10.1007/s00439-020-02131-9
Bustamante, J., Boisson-Dupuis, S., Abel, L. & Casanova, J. L. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin. Immunol. 26, 454–470 (2014).
pubmed: 25453225 pmcid: 4357480 doi: 10.1016/j.smim.2014.09.008
Felgentreff, K. et al. Ligase-4 deficiency causes distinctive immune abnormalities in asymptomatic individuals. J. Clin. Immunol. 36, 341–353 (2016).
pubmed: 27063650 pmcid: 4842108 doi: 10.1007/s10875-016-0266-5
Riballo, E. et al. Cellular and biochemical impact of a mutation in DNA ligase IV conferring clinical radiosensitivity. J. Biol. Chem. 276, 31124–31132 (2001).
pubmed: 11349135 doi: 10.1074/jbc.M103866200
Mizoguchi, Y. & Okada, S. Inborn errors of STAT1 immunity. Curr. Opin. Immunol. 72, 59–64 (2021).
pubmed: 33839590 doi: 10.1016/j.coi.2021.02.009
Dupuis, S. et al. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nat. Genet. 33, 388–391 (2003).
pubmed: 12590259 doi: 10.1038/ng1097
Sakata, S. et al. Autosomal recessive complete STAT1 deficiency caused by compound heterozygous intronic mutations. Int. Immunol. 32, 663–671 (2020).
pubmed: 32603428 doi: 10.1093/intimm/dxaa043
Vairo, D. et al. Severe impairment of IFN-γ and IFN-α responses in cells of a patient with a novel STAT1 splicing mutation. Blood 118, 1806–1817 (2011).
pubmed: 21772053 doi: 10.1182/blood-2011-01-330571
Chapgier, A. et al. A partial form of recessive STAT1 deficiency in humans. J. Clin. Invest. 119, 1502–1514 (2009).
pubmed: 19436109 pmcid: 2689115 doi: 10.1172/JCI37083
Kong, X. F. et al. A novel form of human STAT1 deficiency impairing early but not late responses to interferons. Blood 116, 5895–5906 (2010).
pubmed: 20841510 pmcid: 3031383 doi: 10.1182/blood-2010-04-280586
Kristensen, I. A., Veirum, J. E., Moller, B. K. & Christiansen, M. Novel STAT1 alleles in a patient with impaired resistance to mycobacteria. J. Clin. Immunol. 31, 265–271 (2011).
pubmed: 21057861 doi: 10.1007/s10875-010-9480-8
Chapgier, A. et al. Human complete Stat-1 deficiency is associated with defective type I and II IFN responses in vitro but immunity to some low virulence viruses in vivo. J. Immunol. 176, 5078–5083 (2006).
pubmed: 16585605 doi: 10.4049/jimmunol.176.8.5078
Dupuis, S. et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293, 300–303 (2001).
pubmed: 11452125 doi: 10.1126/science.1061154
Sampaio, E. P. et al. A novel STAT1 mutation associated with disseminated mycobacterial disease. J. Clin. Immunol. 32, 681–689 (2012).
pubmed: 22437822 pmcid: 4112946 doi: 10.1007/s10875-012-9659-2
Tsumura, M. et al. Dominant-negative STAT1 SH2 domain mutations in unrelated patients with Mendelian susceptibility to mycobacterial disease. Hum. Mutat. 33, 1377–1387 (2012).
pubmed: 22573496 pmcid: 3668973 doi: 10.1002/humu.22113
Dorman, S. E. et al. Clinical features of dominant and recessive interferon γ receptor 1 deficiencies. Lancet 364, 2113–2121 (2004).
pubmed: 15589309 doi: 10.1016/S0140-6736(04)17552-1
Rosain, J. et al. Mendelian susceptibility to mycobacterial disease: 2014–2018 update. Immunol. Cell Biol. 97, 360–367 (2019).
pubmed: 30264912 doi: 10.1111/imcb.12210
Fuchs, S. et al. Tyrosine kinase 2 is not limiting human antiviral type III interferon responses. Eur. J. Immunol. 46, 2639–2649 (2016).
pubmed: 27615517 doi: 10.1002/eji.201646519
Kreins, A. Y. et al. Human TYK2 deficiency: mycobacterial and viral infections without hyper-IgE syndrome. J. Exp. Med. 212, 1641–1662 (2015).
pubmed: 26304966 pmcid: 4577846 doi: 10.1084/jem.20140280
Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745–755 (2006).
pubmed: 17088085 doi: 10.1016/j.immuni.2006.09.009
Sarrafzadeh, S. A. et al. A new patient with inherited TYK2 deficiency. J. Clin. Immunol. 40, 232–235 (2020).
pubmed: 31713088 doi: 10.1007/s10875-019-00713-5
Meuwissen, M. E. et al. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J. Exp. Med. 213, 1163–1174 (2016).
pubmed: 27325888 pmcid: 4925017 doi: 10.1084/jem.20151529
Martin-Fernandez, M. et al. Systemic type I IFN inflammation in human ISG15 deficiency leads to necrotizing skin lesions. Cell Rep. 31, 107633 (2020).
pubmed: 32402279 pmcid: 7331931 doi: 10.1016/j.celrep.2020.107633
Casanova, J. L. & Abel, L. Lethal infectious diseases as inborn errors of immunity: toward a synthesis of the germ and genetic theories. Annu. Rev. Pathol. 16, 23–50 (2021). This work presents a historical account of the genetic theory of infectious disease, highlighting how the study of rare IEIs has shaped our current understanding.
pubmed: 32289233 doi: 10.1146/annurev-pathol-031920-101429
Bolze, A. et al. Incomplete penetrance for isolated congenital asplenia in humans with mutations in translated and untranslated RPSA exons. Proc. Natl Acad. Sci. USA 115, E8007–E8016 (2018).
pubmed: 30072435 pmcid: 6112730 doi: 10.1073/pnas.1805437115
Kuehn, H. S. et al. FAS haploinsufficiency is a common disease mechanism in the human autoimmune lymphoproliferative syndrome. J. Immunol. 186, 6035–6043 (2011).
pubmed: 21490157 doi: 10.4049/jimmunol.1100021
Rodriguez-Cortez, V. C. et al. Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naive-to-memory B-cell transition. Nat. Commun. 6, 7335 (2015).
pubmed: 26081581 doi: 10.1038/ncomms8335
Del Pino-Molina, L. et al. Impaired CpG demethylation in common variable immunodeficiency associates with B cell phenotype and proliferation rate. Front. Immunol. 10, 878 (2019).
pubmed: 31105700 pmcid: 6492528 doi: 10.3389/fimmu.2019.00878
Salzer, U. & Grimbacher, B. TACI deficiency — a complex system out of balance. Curr. Opin. Immunol. 71, 81–88 (2021).
pubmed: 34247095 doi: 10.1016/j.coi.2021.06.004
Ameratunga, R. et al. Epistatic interactions between mutations of TACI (TNFRSF13B) and TCF3 result in a severe primary immunodeficiency disorder and systemic lupus erythematosus. Clin. Transl. Immunol. 6, e159 (2017).
doi: 10.1038/cti.2017.41
O’Marcaigh, A. S., Puck, J. M., Pepper, A. E., De Santes, K. & Cowan, M. J. Maternal mosaicism for a novel interleukin-2 receptor γ-chain mutation causing X-linked severe combined immunodeficiency in a Navajo kindred. J. Clin. Immunol. 17, 29–33 (1997).
pubmed: 9049783 doi: 10.1023/A:1027332327827
Puck, J. M., Pepper, A. E., Bedard, P. M. & Laframboise, R. Female germ line mosaicism as the origin of a unique IL-2 receptor γ-chain mutation causing X-linked severe combined immunodeficiency. J. Clin. Invest. 95, 895–899 (1995).
pubmed: 7860773 pmcid: 295580 doi: 10.1172/JCI117740
Mensa-Vilaro, A. et al. Unexpected relevant role of gene mosaicism in patients with primary immunodeficiency diseases. J. Allergy Clin. Immunol. 143, 359–368 (2019).
pubmed: 30273710 doi: 10.1016/j.jaci.2018.09.009
Aluri, J. & Cooper, M. A. Genetic mosaicism as a cause of inborn errors of immunity. J. Clin. Immunol. 41, 718–728 (2021). This paper highlights the role of genetic mosaicism in IEI disease pathogenesis.
pubmed: 33864184 pmcid: 8068627 doi: 10.1007/s10875-021-01037-z
Davis, B. R. et al. Somatic mosaicism in the Wiskott–Aldrich syndrome: molecular and functional characterization of genotypic revertants. Clin. Immunol. 135, 72–83 (2010).
pubmed: 20123155 doi: 10.1016/j.clim.2009.12.011
Stewart, D. M., Candotti, F. & Nelson, D. L. The phenomenon of spontaneous genetic reversions in the Wiskott–Aldrich syndrome: a report of the workshop of the ESID Genetics Working Party at the XIIth Meeting of the European Society for Immunodeficiencies (ESID). Budapest, Hungary October 4–7, 2006. J. Clin. Immunol. 27, 634–639 (2007).
pubmed: 17690954 doi: 10.1007/s10875-007-9121-z
Arredondo-Vega, F. X. et al. Adenosine deaminase deficiency with mosaicism for a “second-site suppressor” of a splicing mutation: decline in revertant T lymphocytes during enzyme replacement therapy. Blood 99, 1005–1013 (2002).
pubmed: 11807006 doi: 10.1182/blood.V99.3.1005
Okuno, Y. et al. Late-onset combined immunodeficiency with a novel IL2RG mutation and probable revertant somatic mosaicism. J. Clin. Immunol. 35, 610–614 (2015).
pubmed: 26407811 doi: 10.1007/s10875-015-0202-0
Uzel, G. et al. Reversion mutations in patients with leukocyte adhesion deficiency type-1 (LAD-1). Blood 111, 209–218 (2008).
pubmed: 17875809 pmcid: 2200806 doi: 10.1182/blood-2007-04-082552
Arostegui, J. I. et al. A somatic NLRP3 mutation as a cause of a sporadic case of chronic infantile neurologic, cutaneous, articular syndrome/neonatal-onset multisystem inflammatory disease: novel evidence of the role of low-level mosaicism as the pathophysiologic mechanism underlying mendelian inherited diseases. Arthritis Rheum. 62, 1158–1166 (2010).
pubmed: 20131270 doi: 10.1002/art.27342
Lasiglie, D. et al. Cryopyrin-associated periodic syndromes in Italian patients: evaluation of the rate of somatic NLRP3 mosaicism and phenotypic characterization. J. Rheumatol. 44, 1667–1673 (2017).
pubmed: 28916543 doi: 10.3899/jrheum.170041
Mensa-Vilaro, A. et al. Late-onset cryopyrin-associated periodic syndrome due to myeloid-restricted somatic NLRP3 mosaicism. Arthritis Rheumatol. 68, 3035–3041 (2016).
pubmed: 27273849 doi: 10.1002/art.39770
Omoyinmi, E. et al. Whole-exome sequencing revealing somatic NLRP3 mosaicism in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheumatol. 66, 197–202 (2014).
pubmed: 24431285 doi: 10.1002/art.38217
Rowczenio, D. M. et al. Late-onset cryopyrin-associated periodic syndromes caused by somatic NLRP3 mosaicism-UK single center experience. Front. Immunol. 8, 1410 (2017).
pubmed: 29163488 pmcid: 5671490 doi: 10.3389/fimmu.2017.01410
Tanaka, N. et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum. 63, 3625–3632 (2011).
pubmed: 21702021 pmcid: 3498501 doi: 10.1002/art.30512
Aluri, J. et al. Immunodeficiency and bone marrow failure with mosaic and germline TLR8 gain of function. Blood 137, 2450–2462 (2021).
pubmed: 33512449 pmcid: 8109013 doi: 10.1182/blood.2020009620
Lynch, M. Mutation and human exceptionalism: our future genetic load. Genetics 202, 869–875 (2016).
pubmed: 26953265 pmcid: 4788123 doi: 10.1534/genetics.115.180471
Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).
pubmed: 29056346 pmcid: 5720395 doi: 10.1016/j.cell.2017.09.042
Fadlallah, J. et al. Microbial ecology perturbation in human IgA deficiency. Sci. Transl Med. 10, eaan1217 (2018).
pubmed: 29720448 doi: 10.1126/scitranslmed.aan1217
Fiedorova, K. et al. Bacterial but not fungal gut microbiota alterations are associated with common variable immunodeficiency (CVID) phenotype. Front. Immunol. 10, 1914 (2019).
pubmed: 31456808 pmcid: 6700332 doi: 10.3389/fimmu.2019.01914
Jorgensen, S. F. et al. Altered gut microbiota profile in common variable immunodeficiency associates with levels of lipopolysaccharide and markers of systemic immune activation. Mucosal Immunol. 9, 1455–1465 (2016).
pubmed: 26982597 doi: 10.1038/mi.2016.18
Berbers, R. M. et al. Low IgA associated with oropharyngeal microbiota changes and lung disease in primary antibody deficiency. Front. Immunol. 11, 1245 (2020).
pubmed: 32636843 pmcid: 7318304 doi: 10.3389/fimmu.2020.01245
Roser, M., Ritchie, H. & Dadonaite, B. Child and infant mortality. Our World In Data https://ourworldindata.org/child-mortality (2019).
El-Brolosy, M. A. et al. Genetic compensation triggered by mutant mRNA degradation. Nature 568, 193–197 (2019).
pubmed: 30944477 pmcid: 6707827 doi: 10.1038/s41586-019-1064-z
Ma, Z. et al. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 568, 259–263 (2019).
pubmed: 30944473 doi: 10.1038/s41586-019-1057-y
Telenti, A. & di Iulio, J. Regulatory genome variants in human susceptibility to infection. Hum. Genet. 139, 759–768 (2020).
pubmed: 31807864 doi: 10.1007/s00439-019-02091-9
Thaventhiran, J. E. D. et al. Whole-genome sequencing of a sporadic primary immunodeficiency cohort. Nature 583, 90–95 (2020).
pubmed: 32499645 pmcid: 7334047 doi: 10.1038/s41586-020-2265-1
Borel, C. et al. Biased allelic expression in human primary fibroblast single cells. Am. J. Hum. Genet. 96, 70–80 (2015).
pubmed: 25557783 pmcid: 4289680 doi: 10.1016/j.ajhg.2014.12.001
Gimelbrant, A., Hutchinson, J. N., Thompson, B. R. & Chess, A. Widespread monoallelic expression on human autosomes. Science 318, 1136–1140 (2007).
pubmed: 18006746 doi: 10.1126/science.1148910
Jeffries, A. R. et al. Stochastic choice of allelic expression in human neural stem cells. Stem Cell 30, 1938–1947 (2012).
doi: 10.1002/stem.1155
Gruber, C. N. et al. Complex autoinflammatory syndrome unveils fundamental principles of JAK1 kinase transcriptional and biochemical function. Immunity 53, 672–684.e11 (2020). This study provides the first demonstration of allelic bias in gene expression, resulting in a discrepancy between genotype and ‘transcriptotype’, in a patient with an IEI.
pubmed: 32750333 pmcid: 7398039 doi: 10.1016/j.immuni.2020.07.006
Reinius, B. & Sandberg, R. Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation. Nat. Rev. Genet. 16, 653–664 (2015).
pubmed: 26442639 doi: 10.1038/nrg3888
Jeffries, A. R. et al. Random or stochastic monoallelic expressed genes are enriched for neurodevelopmental disorder candidate genes. PLoS ONE 8, e85093 (2013).
pubmed: 24386451 pmcid: 3874034 doi: 10.1371/journal.pone.0085093
Gunther, C. et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J. Clin. Invest. 125, 413–424 (2015).
pubmed: 25500883 doi: 10.1172/JCI78001
Giordano, A. M. S. et al. DNA damage contributes to neurotoxic inflammation in Aicardi–Goutières syndrome astrocytes. J. Exp. Med. 219, e20211121 (2022).
pubmed: 35262626 pmcid: 8916121 doi: 10.1084/jem.20211121
Buckley, R. H. Conversations with founders of the field of human inborn errors of immunity. J. Clin. Immunol. 40, 1–8 (2020).
pubmed: 31919710 doi: 10.1007/s10875-019-00736-y
Lutz, W. [About verruciform epidermodysplasia] [French]. Dermatologica 92, 30–43 (1946).
pubmed: 20982046 doi: 10.1159/000255805
Ramoz, N. et al. Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat. Genet. 32, 579–581 (2002).
pubmed: 12426567 doi: 10.1038/ng1044
de Jong, S. J. et al. The human CIB1–EVER1–EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. J. Exp. Med. 215, 2289–2310 (2018).
pubmed: 30068544 pmcid: 6122964 doi: 10.1084/jem.20170308
Kambhampati, A., Payne, D. C., Costantini, V. & Lopman, B. A. Host genetic susceptibility to enteric viruses: a systematic review and metaanalysis. Clin. Infect. Dis. 62, 11–18 (2016).
pubmed: 26508510 doi: 10.1093/cid/civ873
Lindesmith, L. et al. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9, 548–553 (2003).
pubmed: 12692541 doi: 10.1038/nm860
Nordgren, J. et al. Both Lewis and secretor status mediate susceptibility to rotavirus infections in a rotavirus genotype-dependent manner. Clin. Infect. Dis. 59, 1567–1573 (2014).
pubmed: 25097083 pmcid: 4650770 doi: 10.1093/cid/ciu633
Payne, D. C. et al. Epidemiologic association between FUT2 secretor status and severe rotavirus gastroenteritis in children in the United States. JAMA Pediatr. 169, 1040–1045 (2015).
pubmed: 26389824 pmcid: 4856001 doi: 10.1001/jamapediatrics.2015.2002
Thorven, M. et al. A homozygous nonsense mutation (428G– > A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J. Virol. 79, 15351–15355 (2005).
pubmed: 16306606 pmcid: 1315998 doi: 10.1128/JVI.79.24.15351-15355.2005
Ciancanelli, M. J. et al. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348, 448–453 (2015).
pubmed: 25814066 pmcid: 4431581 doi: 10.1126/science.aaa1578
Lafaille, F. G. et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491, 769–773 (2012).
pubmed: 23103873 pmcid: 3527075 doi: 10.1038/nature11583
d’Angelo, D. M., Di Filippo, P., Breda, L. & Chiarelli, F. Type I interferonopathies in children: an overview. Front. Pediatr. 9, 631329 (2021).
pubmed: 33869112 pmcid: 8044321 doi: 10.3389/fped.2021.631329
Wu, D., Shen, M. & Yao, Q. Cutaneous manifestations of autoinflammatory diseases. Rheumatol. Immunol. Res. 2, 217–225 (2021).
pubmed: 36467982 pmcid: 9524803 doi: 10.2478/rir-2021-0030
Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).
pubmed: 25029335 pmcid: 4174543 doi: 10.1056/NEJMoa1312625
David, C. & Fremond, M. L. Lung inflammation in STING-associated vasculopathy with onset n infancy (SAVI). Cells 11, 318 (2022).
pubmed: 35159128 pmcid: 8834229 doi: 10.3390/cells11030318
Fremond, M. L. & Crow, Y. J. STING-mediated lung inflammation and beyond. J. Clin. Immunol. 41, 501–514 (2021).
pubmed: 33532887 doi: 10.1007/s10875-021-00974-z
Staels, F. et al. Adult-onset ANCA-associated vasculitis in SAVI: extension of the phenotypic spectrum, case report and review of the literature. Front. Immunol. 11, 575219 (2020).
pubmed: 33133092 pmcid: 7550674 doi: 10.3389/fimmu.2020.575219
Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).
pubmed: 19890111 pmcid: 2787406 doi: 10.1056/NEJMoa0907206
Avitzur, Y. et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology 146, 1028–1039 (2014).
pubmed: 24417819 doi: 10.1053/j.gastro.2014.01.015
Salzer, E. et al. Early-onset inflammatory bowel disease and common variable immunodeficiency-like disease caused by IL-21 deficiency. J. Allergy Clin. Immunol. 133, 1651–1659.e12 (2014).
pubmed: 24746753 doi: 10.1016/j.jaci.2014.02.034
Li, Q. et al. Variants in TRIM22 that affect NOD2 signaling are associated with very-early-onset inflammatory bowel disease. Gastroenterology 150, 1196–1207 (2016).
pubmed: 26836588 doi: 10.1053/j.gastro.2016.01.031
Parlato, M. et al. Human ALPI deficiency causes inflammatory bowel disease and highlights a key mechanism of gut homeostasis. EMBO Mol. Med. 10, e8483 (2018).
pubmed: 29567797 pmcid: 5887907 doi: 10.15252/emmm.201708483
Beck, D. B. et al. Estimated prevalence and clinical manifestations of UBA1 variants associated with VEXAS syndrome in a clinical population. JAMA 329, 318–324 (2023). This study uses a reverse genetics approach to define the general population prevalence and phenotypic spectrum of an IEI.
pubmed: 36692560 pmcid: 10408261 doi: 10.1001/jama.2022.24836
Dowdell, K. C. et al. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood 115, 5164–5169 (2010).
pubmed: 20360470 pmcid: 2892951 doi: 10.1182/blood-2010-01-263145
Walker, S. et al. Identification of a gain-of-function STAT3 mutation (p.Y640F) in lymphocytic variant hypereosinophilic syndrome. Blood 127, 948–951 (2016).
pubmed: 26702067 pmcid: 4760095 doi: 10.1182/blood-2015-06-654277
Campbell, T. M. et al. Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. J. Exp. Med. 219, e20220202 (2022).
pubmed: 35670811 pmcid: 9178406 doi: 10.1084/jem.20220202
Martin-Fernandez, M. et al. A partial form of inherited human USP18 deficiency underlies infection and inflammation. J. Exp. Med. 219, e20211273 (2022).
pubmed: 35258551 pmcid: 8908790 doi: 10.1084/jem.20211273
Gruber, C. et al. Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy. J. Exp. Med. 217, e20192319 (2020).
pubmed: 32092142 pmcid: 7201920 doi: 10.1084/jem.20192319

Auteurs

Yemsratch T Akalu (YT)

Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Dusan Bogunovic (D)

Center for Inborn Errors of Immunity, Precision Immunology Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Dusan.Bogunovic@mssm.edu.

Classifications MeSH