Inborn errors of immunity: an expanding universe of disease and genetic architecture.
Journal
Nature reviews. Genetics
ISSN: 1471-0064
Titre abrégé: Nat Rev Genet
Pays: England
ID NLM: 100962779
Informations de publication
Date de publication:
20 Oct 2023
20 Oct 2023
Historique:
accepted:
06
09
2023
medline:
21
10
2023
pubmed:
21
10
2023
entrez:
20
10
2023
Statut:
aheadofprint
Résumé
Inborn errors of immunity (IEIs) are generally considered to be rare monogenic disorders of the immune system that cause immunodeficiency, autoinflammation, autoimmunity, allergy and/or cancer. Here, we discuss evidence that IEIs need not be rare disorders or exclusively affect the immune system. Namely, an increasing number of patients with IEIs present with severe dysregulations of the central nervous, digestive, renal or pulmonary systems. Current challenges in the diagnosis of IEIs that result from the segregated practice of specialized medicine could thus be mitigated, in part, by immunogenetic approaches. Starting with a brief historical overview of IEIs, we then discuss the technological advances that are facilitating the immunogenetic study of IEIs, progress in understanding disease penetrance in IEIs, the expanding universe of IEIs affecting distal organ systems and the future of genetic, biochemical and medical discoveries in this field.
Identifiants
pubmed: 37863939
doi: 10.1038/s41576-023-00656-z
pii: 10.1038/s41576-023-00656-z
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. Springer Nature Limited.
Références
Tangye, S. G. et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 40, 24–64 (2020).
pubmed: 31953710
pmcid: 7082301
doi: 10.1007/s10875-019-00737-x
Beck, D. B. et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease. N. Engl. J. Med. 383, 2628–2638 (2020).
pubmed: 33108101
pmcid: 7847551
doi: 10.1056/NEJMoa2026834
Bousfiha, A. et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J. Clin. Immunol. 42, 1508–1520 (2022).
pubmed: 36198931
doi: 10.1007/s10875-022-01352-z
Tangye, S. G. et al. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee. J. Clin. Immunol. 42, 1473–1507 (2022). This work presents the most up-to-date report of the classification of IEIs and their associated features.
pubmed: 35748970
pmcid: 9244088
doi: 10.1007/s10875-022-01289-3
Fischer, A. Gene therapy for inborn errors of immunity: past, present and future. Nat. Rev. Immunol. 23, 397–408 (2023). This article reviews the development of gene therapies for IEIs and discusses the next steps for the field.
pubmed: 36434109
doi: 10.1038/s41577-022-00800-6
von Verschuer, O. Twin research from the time of Francis Galton to the present-day. Proc. R. Soc. Lond. B 128, 62–81 (1939).
doi: 10.1098/rspb.1939.0044
Boisson-Dupuis, S. The monogenic basis of human tuberculosis. Hum. Genet. 139, 1001–1009 (2020).
pubmed: 32055999
pmcid: 7275886
doi: 10.1007/s00439-020-02126-6
Bruton, O. C. Agammaglobulinemia. Pediatrics 9, 722–728 (1952).
pubmed: 14929630
doi: 10.1542/peds.9.6.722
Ochs, H. D. & Hitzig, W. H. History of primary immunodeficiency diseases. Curr. Opin. Allergy Clin. Immunol. 12, 577–587 (2012). This article presents a comprehensive history of the field of IEIs.
pubmed: 23095909
doi: 10.1097/ACI.0b013e32835923a6
Bruton, O. C., Apt, L., Gitlin, D. & Janeway, C. A. Absence of serum gamma globulins. AMA Am. J. Dis. Child. 84, 632–636 (1952).
pubmed: 12984834
Vetrie, D. et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361, 226–233 (1993).
pubmed: 8380905
doi: 10.1038/361226a0
Hood, L. E., Hunkapiller, M. W. & Smith, L. M. Automated DNA sequencing and analysis of the human genome. Genomics 1, 201–212 (1987).
pubmed: 3328736
doi: 10.1016/0888-7543(87)90046-2
Benichou, B. & Strominger, J. L. Class II-antigen-negative patient and mutant B-cell lines represent at least three, and probably four, distinct genetic defects defined by complementation analysis. Proc. Natl Acad. Sci. USA 88, 4285–4288 (1991).
pubmed: 1852002
pmcid: 51643
doi: 10.1073/pnas.88.10.4285
Lisowska-Grospierre, B., Fondaneche, M. C., Rols, M. P., Griscelli, C. & Fischer, A. Two complementation groups account for most cases of inherited MHC class II deficiency. Hum. Mol. Genet. 3, 953–958 (1994).
pubmed: 7951244
doi: 10.1093/hmg/3.6.953
Seidl, C., Saraiya, C., Osterweil, Z., Fu, Y. P. & Lee, J. S. Genetic complexity of regulatory mutants defective for HLA class II gene expression. J. Immunol. 148, 1576–1584 (1992).
pubmed: 1538137
doi: 10.4049/jimmunol.148.5.1576
Gong, W. et al. A transcription map of the DiGeorge and velo-cardio-facial syndrome minimal critical region on 22q11. Hum. Mol. Genet. 5, 789–800 (1996).
pubmed: 8776594
doi: 10.1093/hmg/5.6.789
de Saint Basile, G. et al. Close linkage of the locus for X chromosome-linked severe combined immunodeficiency to polymorphic DNA markers in Xq11-q13. Proc. Natl Acad. Sci. USA 84, 7576–7579 (1987).
doi: 10.1073/pnas.84.21.7576
Noguchi, M. et al. Interleukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 73, 147–157 (1993).
pubmed: 8462096
doi: 10.1016/0092-8674(93)90167-O
Puck, J. M. et al. The interleukin-2 receptor gamma chain maps to Xq13.1 and is mutated in X-linked severe combined immunodeficiency, SCIDX1. Hum. Mol. Genet. 2, 1099–1104 (1993).
pubmed: 8401490
doi: 10.1093/hmg/2.8.1099
Baehner, R. L. et al. DNA linkage analysis of X chromosome-linked chronic granulomatous disease. Proc. Natl Acad. Sci. USA 83, 3398–3401 (1986).
pubmed: 3010296
pmcid: 323521
doi: 10.1073/pnas.83.10.3398
Royer-Pokora, B. et al. Cloning the gene for an inherited human disorder — chronic granulomatous disease — on the basis of its chromosomal location. Nature 322, 32–38 (1986).
pubmed: 2425263
doi: 10.1038/322032a0
Kwan, S. P. et al. Localization of the gene for the Wiskott–Aldrich syndrome between two flanking markers, TIMP and DXS255, on Xp11.22–Xp11.3. Genomics 10, 29–33 (1991).
pubmed: 1675197
doi: 10.1016/0888-7543(91)90480-3
Schwarz, K. et al. RAG mutations in human B cell-negative SCID. Science 274, 97–99 (1996).
pubmed: 8810255
doi: 10.1126/science.274.5284.97
Hsu, A. P. et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood 118, 2653–2655 (2011).
pubmed: 21670465
pmcid: 3172785
doi: 10.1182/blood-2011-05-356352
Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361, 2046–2055 (2009).
pubmed: 19776401
pmcid: 2965730
doi: 10.1056/NEJMoa0905506
Arai, T. et al. Copy number variations due to large genomic deletion in X-linked chronic granulomatous disease. PLoS ONE 7, e27782 (2012).
pubmed: 22383943
pmcid: 3287986
doi: 10.1371/journal.pone.0027782
Yamada, M. et al. Determination of the deletion breakpoints in two patients with contiguous gene syndrome encompassing CYBB gene. Eur. J. Med. Genet. 53, 383–388 (2010).
pubmed: 20813210
doi: 10.1016/j.ejmg.2010.08.003
Lander, E. S. & Botstein, D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).
pubmed: 2884728
doi: 10.1126/science.2884728
Mueller, R. F. & Bishop, D. T. Autozygosity mapping, complex consanguinity, and autosomal recessive disorders. J. Med. Genet. 30, 798–799 (1993).
pubmed: 8411082
pmcid: 1016549
doi: 10.1136/jmg.30.9.798
Byun, M. et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J. Exp. Med. 207, 2307–2312 (2010).
pubmed: 20876309
pmcid: 2964585
doi: 10.1084/jem.20101597
Bogunovic, D. et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science 337, 1684–1688 (2012).
pubmed: 22859821
pmcid: 3507439
doi: 10.1126/science.1224026
Zhang, X. et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517, 89–93 (2015).
pubmed: 25307056
doi: 10.1038/nature13801
Ombrello, M. J. et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N. Engl. J. Med. 366, 330–338 (2012).
pubmed: 22236196
pmcid: 3298368
doi: 10.1056/NEJMoa1102140
Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat. Immunol. 13, 1178–1186 (2012).
pubmed: 23104095
pmcid: 3514453
doi: 10.1038/ni.2457
Morup, S. B. et al. Added value of reanalysis of whole exome- and whole genome sequencing data from patients suspected of primary immune deficiency using an extended gene panel and structural variation calling. Front. Immunol. 13, 906328 (2022).
pubmed: 35874679
pmcid: 9302041
doi: 10.3389/fimmu.2022.906328
Similuk, M. N. et al. Clinical exome sequencing of 1000 families with complex immune phenotypes: toward comprehensive genomic evaluations. J. Allergy Clin. Immunol. 150, 947–954 (2022).
pubmed: 35753512
pmcid: 9547837
doi: 10.1016/j.jaci.2022.06.009
Boisson-Dupuis, S. et al. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci. Immunol. 3, eaau8714 (2018).
pubmed: 30578352
pmcid: 6341984
doi: 10.1126/sciimmunol.aau8714
Bastard, P. et al. A loss-of-function IFNAR1 allele in Polynesia underlies severe viral diseases in homozygotes. J. Exp. Med. 219, e20220028 (2022).
pubmed: 35442418
pmcid: 9026234
doi: 10.1084/jem.20220028
Duncan, C. J. A. et al. Life-threatening viral disease in a novel form of autosomal recessive IFNAR2 deficiency in the Arctic. J. Exp. Med. 219, e20212427 (2022).
pubmed: 35442417
pmcid: 9026249
doi: 10.1084/jem.20212427
Constantinescu, A. E. et al. A framework for research into continental ancestry groups of the UK Biobank. Hum. Genomics 16, 3 (2022).
pubmed: 35093177
pmcid: 8800339
doi: 10.1186/s40246-022-00380-5
Gurdasani, D., Barroso, I., Zeggini, E. & Sandhu, M. S. Genomics of disease risk in globally diverse populations. Nat. Rev. Genet. 20, 520–535 (2019).
pubmed: 31235872
doi: 10.1038/s41576-019-0144-0
Manolio, T. A. Using the data we have: improving diversity in genomic research. Am. J. Hum. Genet. 105, 233–236 (2019).
pubmed: 31374201
pmcid: 6698933
doi: 10.1016/j.ajhg.2019.07.008
Meyts, I. et al. Exome and genome sequencing for inborn errors of immunity. J. Allergy Clin. Immunol. 138, 957–969 (2016).
pubmed: 27720020
pmcid: 5074686
doi: 10.1016/j.jaci.2016.08.003
Austin-Tse, C. A. et al. Best practices for the interpretation and reporting of clinical whole genome sequencing. npj Genom. Med. 7, 27 (2022).
pubmed: 35395838
pmcid: 8993917
doi: 10.1038/s41525-022-00295-z
Bucciol, G., Van Nieuwenhove, E., Moens, L., Itan, Y. & Meyts, I. Whole exome sequencing in inborn errors of immunity: use the power but mind the limits. Curr. Opin. Allergy Clin. Immunol. 17, 421–430 (2017).
pubmed: 28938278
doi: 10.1097/ACI.0000000000000398
Gruber, C. & Bogunovic, D. Incomplete penetrance in primary immunodeficiency: a skeleton in the closet. Hum. Genet. 139, 745–757 (2020). This article reviews decades of reports to present four principles of incomplete penetrance in primary immunodeficiencies to help categorize and explain these occurrences.
pubmed: 32067110
pmcid: 7275875
doi: 10.1007/s00439-020-02131-9
Bustamante, J., Boisson-Dupuis, S., Abel, L. & Casanova, J. L. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin. Immunol. 26, 454–470 (2014).
pubmed: 25453225
pmcid: 4357480
doi: 10.1016/j.smim.2014.09.008
Felgentreff, K. et al. Ligase-4 deficiency causes distinctive immune abnormalities in asymptomatic individuals. J. Clin. Immunol. 36, 341–353 (2016).
pubmed: 27063650
pmcid: 4842108
doi: 10.1007/s10875-016-0266-5
Riballo, E. et al. Cellular and biochemical impact of a mutation in DNA ligase IV conferring clinical radiosensitivity. J. Biol. Chem. 276, 31124–31132 (2001).
pubmed: 11349135
doi: 10.1074/jbc.M103866200
Mizoguchi, Y. & Okada, S. Inborn errors of STAT1 immunity. Curr. Opin. Immunol. 72, 59–64 (2021).
pubmed: 33839590
doi: 10.1016/j.coi.2021.02.009
Dupuis, S. et al. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nat. Genet. 33, 388–391 (2003).
pubmed: 12590259
doi: 10.1038/ng1097
Sakata, S. et al. Autosomal recessive complete STAT1 deficiency caused by compound heterozygous intronic mutations. Int. Immunol. 32, 663–671 (2020).
pubmed: 32603428
doi: 10.1093/intimm/dxaa043
Vairo, D. et al. Severe impairment of IFN-γ and IFN-α responses in cells of a patient with a novel STAT1 splicing mutation. Blood 118, 1806–1817 (2011).
pubmed: 21772053
doi: 10.1182/blood-2011-01-330571
Chapgier, A. et al. A partial form of recessive STAT1 deficiency in humans. J. Clin. Invest. 119, 1502–1514 (2009).
pubmed: 19436109
pmcid: 2689115
doi: 10.1172/JCI37083
Kong, X. F. et al. A novel form of human STAT1 deficiency impairing early but not late responses to interferons. Blood 116, 5895–5906 (2010).
pubmed: 20841510
pmcid: 3031383
doi: 10.1182/blood-2010-04-280586
Kristensen, I. A., Veirum, J. E., Moller, B. K. & Christiansen, M. Novel STAT1 alleles in a patient with impaired resistance to mycobacteria. J. Clin. Immunol. 31, 265–271 (2011).
pubmed: 21057861
doi: 10.1007/s10875-010-9480-8
Chapgier, A. et al. Human complete Stat-1 deficiency is associated with defective type I and II IFN responses in vitro but immunity to some low virulence viruses in vivo. J. Immunol. 176, 5078–5083 (2006).
pubmed: 16585605
doi: 10.4049/jimmunol.176.8.5078
Dupuis, S. et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 293, 300–303 (2001).
pubmed: 11452125
doi: 10.1126/science.1061154
Sampaio, E. P. et al. A novel STAT1 mutation associated with disseminated mycobacterial disease. J. Clin. Immunol. 32, 681–689 (2012).
pubmed: 22437822
pmcid: 4112946
doi: 10.1007/s10875-012-9659-2
Tsumura, M. et al. Dominant-negative STAT1 SH2 domain mutations in unrelated patients with Mendelian susceptibility to mycobacterial disease. Hum. Mutat. 33, 1377–1387 (2012).
pubmed: 22573496
pmcid: 3668973
doi: 10.1002/humu.22113
Dorman, S. E. et al. Clinical features of dominant and recessive interferon γ receptor 1 deficiencies. Lancet 364, 2113–2121 (2004).
pubmed: 15589309
doi: 10.1016/S0140-6736(04)17552-1
Rosain, J. et al. Mendelian susceptibility to mycobacterial disease: 2014–2018 update. Immunol. Cell Biol. 97, 360–367 (2019).
pubmed: 30264912
doi: 10.1111/imcb.12210
Fuchs, S. et al. Tyrosine kinase 2 is not limiting human antiviral type III interferon responses. Eur. J. Immunol. 46, 2639–2649 (2016).
pubmed: 27615517
doi: 10.1002/eji.201646519
Kreins, A. Y. et al. Human TYK2 deficiency: mycobacterial and viral infections without hyper-IgE syndrome. J. Exp. Med. 212, 1641–1662 (2015).
pubmed: 26304966
pmcid: 4577846
doi: 10.1084/jem.20140280
Minegishi, Y. et al. Human tyrosine kinase 2 deficiency reveals its requisite roles in multiple cytokine signals involved in innate and acquired immunity. Immunity 25, 745–755 (2006).
pubmed: 17088085
doi: 10.1016/j.immuni.2006.09.009
Sarrafzadeh, S. A. et al. A new patient with inherited TYK2 deficiency. J. Clin. Immunol. 40, 232–235 (2020).
pubmed: 31713088
doi: 10.1007/s10875-019-00713-5
Meuwissen, M. E. et al. Human USP18 deficiency underlies type 1 interferonopathy leading to severe pseudo-TORCH syndrome. J. Exp. Med. 213, 1163–1174 (2016).
pubmed: 27325888
pmcid: 4925017
doi: 10.1084/jem.20151529
Martin-Fernandez, M. et al. Systemic type I IFN inflammation in human ISG15 deficiency leads to necrotizing skin lesions. Cell Rep. 31, 107633 (2020).
pubmed: 32402279
pmcid: 7331931
doi: 10.1016/j.celrep.2020.107633
Casanova, J. L. & Abel, L. Lethal infectious diseases as inborn errors of immunity: toward a synthesis of the germ and genetic theories. Annu. Rev. Pathol. 16, 23–50 (2021). This work presents a historical account of the genetic theory of infectious disease, highlighting how the study of rare IEIs has shaped our current understanding.
pubmed: 32289233
doi: 10.1146/annurev-pathol-031920-101429
Bolze, A. et al. Incomplete penetrance for isolated congenital asplenia in humans with mutations in translated and untranslated RPSA exons. Proc. Natl Acad. Sci. USA 115, E8007–E8016 (2018).
pubmed: 30072435
pmcid: 6112730
doi: 10.1073/pnas.1805437115
Kuehn, H. S. et al. FAS haploinsufficiency is a common disease mechanism in the human autoimmune lymphoproliferative syndrome. J. Immunol. 186, 6035–6043 (2011).
pubmed: 21490157
doi: 10.4049/jimmunol.1100021
Rodriguez-Cortez, V. C. et al. Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naive-to-memory B-cell transition. Nat. Commun. 6, 7335 (2015).
pubmed: 26081581
doi: 10.1038/ncomms8335
Del Pino-Molina, L. et al. Impaired CpG demethylation in common variable immunodeficiency associates with B cell phenotype and proliferation rate. Front. Immunol. 10, 878 (2019).
pubmed: 31105700
pmcid: 6492528
doi: 10.3389/fimmu.2019.00878
Salzer, U. & Grimbacher, B. TACI deficiency — a complex system out of balance. Curr. Opin. Immunol. 71, 81–88 (2021).
pubmed: 34247095
doi: 10.1016/j.coi.2021.06.004
Ameratunga, R. et al. Epistatic interactions between mutations of TACI (TNFRSF13B) and TCF3 result in a severe primary immunodeficiency disorder and systemic lupus erythematosus. Clin. Transl. Immunol. 6, e159 (2017).
doi: 10.1038/cti.2017.41
O’Marcaigh, A. S., Puck, J. M., Pepper, A. E., De Santes, K. & Cowan, M. J. Maternal mosaicism for a novel interleukin-2 receptor γ-chain mutation causing X-linked severe combined immunodeficiency in a Navajo kindred. J. Clin. Immunol. 17, 29–33 (1997).
pubmed: 9049783
doi: 10.1023/A:1027332327827
Puck, J. M., Pepper, A. E., Bedard, P. M. & Laframboise, R. Female germ line mosaicism as the origin of a unique IL-2 receptor γ-chain mutation causing X-linked severe combined immunodeficiency. J. Clin. Invest. 95, 895–899 (1995).
pubmed: 7860773
pmcid: 295580
doi: 10.1172/JCI117740
Mensa-Vilaro, A. et al. Unexpected relevant role of gene mosaicism in patients with primary immunodeficiency diseases. J. Allergy Clin. Immunol. 143, 359–368 (2019).
pubmed: 30273710
doi: 10.1016/j.jaci.2018.09.009
Aluri, J. & Cooper, M. A. Genetic mosaicism as a cause of inborn errors of immunity. J. Clin. Immunol. 41, 718–728 (2021). This paper highlights the role of genetic mosaicism in IEI disease pathogenesis.
pubmed: 33864184
pmcid: 8068627
doi: 10.1007/s10875-021-01037-z
Davis, B. R. et al. Somatic mosaicism in the Wiskott–Aldrich syndrome: molecular and functional characterization of genotypic revertants. Clin. Immunol. 135, 72–83 (2010).
pubmed: 20123155
doi: 10.1016/j.clim.2009.12.011
Stewart, D. M., Candotti, F. & Nelson, D. L. The phenomenon of spontaneous genetic reversions in the Wiskott–Aldrich syndrome: a report of the workshop of the ESID Genetics Working Party at the XIIth Meeting of the European Society for Immunodeficiencies (ESID). Budapest, Hungary October 4–7, 2006. J. Clin. Immunol. 27, 634–639 (2007).
pubmed: 17690954
doi: 10.1007/s10875-007-9121-z
Arredondo-Vega, F. X. et al. Adenosine deaminase deficiency with mosaicism for a “second-site suppressor” of a splicing mutation: decline in revertant T lymphocytes during enzyme replacement therapy. Blood 99, 1005–1013 (2002).
pubmed: 11807006
doi: 10.1182/blood.V99.3.1005
Okuno, Y. et al. Late-onset combined immunodeficiency with a novel IL2RG mutation and probable revertant somatic mosaicism. J. Clin. Immunol. 35, 610–614 (2015).
pubmed: 26407811
doi: 10.1007/s10875-015-0202-0
Uzel, G. et al. Reversion mutations in patients with leukocyte adhesion deficiency type-1 (LAD-1). Blood 111, 209–218 (2008).
pubmed: 17875809
pmcid: 2200806
doi: 10.1182/blood-2007-04-082552
Arostegui, J. I. et al. A somatic NLRP3 mutation as a cause of a sporadic case of chronic infantile neurologic, cutaneous, articular syndrome/neonatal-onset multisystem inflammatory disease: novel evidence of the role of low-level mosaicism as the pathophysiologic mechanism underlying mendelian inherited diseases. Arthritis Rheum. 62, 1158–1166 (2010).
pubmed: 20131270
doi: 10.1002/art.27342
Lasiglie, D. et al. Cryopyrin-associated periodic syndromes in Italian patients: evaluation of the rate of somatic NLRP3 mosaicism and phenotypic characterization. J. Rheumatol. 44, 1667–1673 (2017).
pubmed: 28916543
doi: 10.3899/jrheum.170041
Mensa-Vilaro, A. et al. Late-onset cryopyrin-associated periodic syndrome due to myeloid-restricted somatic NLRP3 mosaicism. Arthritis Rheumatol. 68, 3035–3041 (2016).
pubmed: 27273849
doi: 10.1002/art.39770
Omoyinmi, E. et al. Whole-exome sequencing revealing somatic NLRP3 mosaicism in a patient with chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheumatol. 66, 197–202 (2014).
pubmed: 24431285
doi: 10.1002/art.38217
Rowczenio, D. M. et al. Late-onset cryopyrin-associated periodic syndromes caused by somatic NLRP3 mosaicism-UK single center experience. Front. Immunol. 8, 1410 (2017).
pubmed: 29163488
pmcid: 5671490
doi: 10.3389/fimmu.2017.01410
Tanaka, N. et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum. 63, 3625–3632 (2011).
pubmed: 21702021
pmcid: 3498501
doi: 10.1002/art.30512
Aluri, J. et al. Immunodeficiency and bone marrow failure with mosaic and germline TLR8 gain of function. Blood 137, 2450–2462 (2021).
pubmed: 33512449
pmcid: 8109013
doi: 10.1182/blood.2020009620
Lynch, M. Mutation and human exceptionalism: our future genetic load. Genetics 202, 869–875 (2016).
pubmed: 26953265
pmcid: 4788123
doi: 10.1534/genetics.115.180471
Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).
pubmed: 29056346
pmcid: 5720395
doi: 10.1016/j.cell.2017.09.042
Fadlallah, J. et al. Microbial ecology perturbation in human IgA deficiency. Sci. Transl Med. 10, eaan1217 (2018).
pubmed: 29720448
doi: 10.1126/scitranslmed.aan1217
Fiedorova, K. et al. Bacterial but not fungal gut microbiota alterations are associated with common variable immunodeficiency (CVID) phenotype. Front. Immunol. 10, 1914 (2019).
pubmed: 31456808
pmcid: 6700332
doi: 10.3389/fimmu.2019.01914
Jorgensen, S. F. et al. Altered gut microbiota profile in common variable immunodeficiency associates with levels of lipopolysaccharide and markers of systemic immune activation. Mucosal Immunol. 9, 1455–1465 (2016).
pubmed: 26982597
doi: 10.1038/mi.2016.18
Berbers, R. M. et al. Low IgA associated with oropharyngeal microbiota changes and lung disease in primary antibody deficiency. Front. Immunol. 11, 1245 (2020).
pubmed: 32636843
pmcid: 7318304
doi: 10.3389/fimmu.2020.01245
Roser, M., Ritchie, H. & Dadonaite, B. Child and infant mortality. Our World In Data https://ourworldindata.org/child-mortality (2019).
El-Brolosy, M. A. et al. Genetic compensation triggered by mutant mRNA degradation. Nature 568, 193–197 (2019).
pubmed: 30944477
pmcid: 6707827
doi: 10.1038/s41586-019-1064-z
Ma, Z. et al. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components. Nature 568, 259–263 (2019).
pubmed: 30944473
doi: 10.1038/s41586-019-1057-y
Telenti, A. & di Iulio, J. Regulatory genome variants in human susceptibility to infection. Hum. Genet. 139, 759–768 (2020).
pubmed: 31807864
doi: 10.1007/s00439-019-02091-9
Thaventhiran, J. E. D. et al. Whole-genome sequencing of a sporadic primary immunodeficiency cohort. Nature 583, 90–95 (2020).
pubmed: 32499645
pmcid: 7334047
doi: 10.1038/s41586-020-2265-1
Borel, C. et al. Biased allelic expression in human primary fibroblast single cells. Am. J. Hum. Genet. 96, 70–80 (2015).
pubmed: 25557783
pmcid: 4289680
doi: 10.1016/j.ajhg.2014.12.001
Gimelbrant, A., Hutchinson, J. N., Thompson, B. R. & Chess, A. Widespread monoallelic expression on human autosomes. Science 318, 1136–1140 (2007).
pubmed: 18006746
doi: 10.1126/science.1148910
Jeffries, A. R. et al. Stochastic choice of allelic expression in human neural stem cells. Stem Cell 30, 1938–1947 (2012).
doi: 10.1002/stem.1155
Gruber, C. N. et al. Complex autoinflammatory syndrome unveils fundamental principles of JAK1 kinase transcriptional and biochemical function. Immunity 53, 672–684.e11 (2020). This study provides the first demonstration of allelic bias in gene expression, resulting in a discrepancy between genotype and ‘transcriptotype’, in a patient with an IEI.
pubmed: 32750333
pmcid: 7398039
doi: 10.1016/j.immuni.2020.07.006
Reinius, B. & Sandberg, R. Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation. Nat. Rev. Genet. 16, 653–664 (2015).
pubmed: 26442639
doi: 10.1038/nrg3888
Jeffries, A. R. et al. Random or stochastic monoallelic expressed genes are enriched for neurodevelopmental disorder candidate genes. PLoS ONE 8, e85093 (2013).
pubmed: 24386451
pmcid: 3874034
doi: 10.1371/journal.pone.0085093
Gunther, C. et al. Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J. Clin. Invest. 125, 413–424 (2015).
pubmed: 25500883
doi: 10.1172/JCI78001
Giordano, A. M. S. et al. DNA damage contributes to neurotoxic inflammation in Aicardi–Goutières syndrome astrocytes. J. Exp. Med. 219, e20211121 (2022).
pubmed: 35262626
pmcid: 8916121
doi: 10.1084/jem.20211121
Buckley, R. H. Conversations with founders of the field of human inborn errors of immunity. J. Clin. Immunol. 40, 1–8 (2020).
pubmed: 31919710
doi: 10.1007/s10875-019-00736-y
Lutz, W. [About verruciform epidermodysplasia] [French]. Dermatologica 92, 30–43 (1946).
pubmed: 20982046
doi: 10.1159/000255805
Ramoz, N. et al. Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat. Genet. 32, 579–581 (2002).
pubmed: 12426567
doi: 10.1038/ng1044
de Jong, S. J. et al. The human CIB1–EVER1–EVER2 complex governs keratinocyte-intrinsic immunity to β-papillomaviruses. J. Exp. Med. 215, 2289–2310 (2018).
pubmed: 30068544
pmcid: 6122964
doi: 10.1084/jem.20170308
Kambhampati, A., Payne, D. C., Costantini, V. & Lopman, B. A. Host genetic susceptibility to enteric viruses: a systematic review and metaanalysis. Clin. Infect. Dis. 62, 11–18 (2016).
pubmed: 26508510
doi: 10.1093/cid/civ873
Lindesmith, L. et al. Human susceptibility and resistance to Norwalk virus infection. Nat. Med. 9, 548–553 (2003).
pubmed: 12692541
doi: 10.1038/nm860
Nordgren, J. et al. Both Lewis and secretor status mediate susceptibility to rotavirus infections in a rotavirus genotype-dependent manner. Clin. Infect. Dis. 59, 1567–1573 (2014).
pubmed: 25097083
pmcid: 4650770
doi: 10.1093/cid/ciu633
Payne, D. C. et al. Epidemiologic association between FUT2 secretor status and severe rotavirus gastroenteritis in children in the United States. JAMA Pediatr. 169, 1040–1045 (2015).
pubmed: 26389824
pmcid: 4856001
doi: 10.1001/jamapediatrics.2015.2002
Thorven, M. et al. A homozygous nonsense mutation (428G– > A) in the human secretor (FUT2) gene provides resistance to symptomatic norovirus (GGII) infections. J. Virol. 79, 15351–15355 (2005).
pubmed: 16306606
pmcid: 1315998
doi: 10.1128/JVI.79.24.15351-15355.2005
Ciancanelli, M. J. et al. Infectious disease. Life-threatening influenza and impaired interferon amplification in human IRF7 deficiency. Science 348, 448–453 (2015).
pubmed: 25814066
pmcid: 4431581
doi: 10.1126/science.aaa1578
Lafaille, F. G. et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491, 769–773 (2012).
pubmed: 23103873
pmcid: 3527075
doi: 10.1038/nature11583
d’Angelo, D. M., Di Filippo, P., Breda, L. & Chiarelli, F. Type I interferonopathies in children: an overview. Front. Pediatr. 9, 631329 (2021).
pubmed: 33869112
pmcid: 8044321
doi: 10.3389/fped.2021.631329
Wu, D., Shen, M. & Yao, Q. Cutaneous manifestations of autoinflammatory diseases. Rheumatol. Immunol. Res. 2, 217–225 (2021).
pubmed: 36467982
pmcid: 9524803
doi: 10.2478/rir-2021-0030
Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).
pubmed: 25029335
pmcid: 4174543
doi: 10.1056/NEJMoa1312625
David, C. & Fremond, M. L. Lung inflammation in STING-associated vasculopathy with onset n infancy (SAVI). Cells 11, 318 (2022).
pubmed: 35159128
pmcid: 8834229
doi: 10.3390/cells11030318
Fremond, M. L. & Crow, Y. J. STING-mediated lung inflammation and beyond. J. Clin. Immunol. 41, 501–514 (2021).
pubmed: 33532887
doi: 10.1007/s10875-021-00974-z
Staels, F. et al. Adult-onset ANCA-associated vasculitis in SAVI: extension of the phenotypic spectrum, case report and review of the literature. Front. Immunol. 11, 575219 (2020).
pubmed: 33133092
pmcid: 7550674
doi: 10.3389/fimmu.2020.575219
Glocker, E. O. et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N. Engl. J. Med. 361, 2033–2045 (2009).
pubmed: 19890111
pmcid: 2787406
doi: 10.1056/NEJMoa0907206
Avitzur, Y. et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology 146, 1028–1039 (2014).
pubmed: 24417819
doi: 10.1053/j.gastro.2014.01.015
Salzer, E. et al. Early-onset inflammatory bowel disease and common variable immunodeficiency-like disease caused by IL-21 deficiency. J. Allergy Clin. Immunol. 133, 1651–1659.e12 (2014).
pubmed: 24746753
doi: 10.1016/j.jaci.2014.02.034
Li, Q. et al. Variants in TRIM22 that affect NOD2 signaling are associated with very-early-onset inflammatory bowel disease. Gastroenterology 150, 1196–1207 (2016).
pubmed: 26836588
doi: 10.1053/j.gastro.2016.01.031
Parlato, M. et al. Human ALPI deficiency causes inflammatory bowel disease and highlights a key mechanism of gut homeostasis. EMBO Mol. Med. 10, e8483 (2018).
pubmed: 29567797
pmcid: 5887907
doi: 10.15252/emmm.201708483
Beck, D. B. et al. Estimated prevalence and clinical manifestations of UBA1 variants associated with VEXAS syndrome in a clinical population. JAMA 329, 318–324 (2023). This study uses a reverse genetics approach to define the general population prevalence and phenotypic spectrum of an IEI.
pubmed: 36692560
pmcid: 10408261
doi: 10.1001/jama.2022.24836
Dowdell, K. C. et al. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood 115, 5164–5169 (2010).
pubmed: 20360470
pmcid: 2892951
doi: 10.1182/blood-2010-01-263145
Walker, S. et al. Identification of a gain-of-function STAT3 mutation (p.Y640F) in lymphocytic variant hypereosinophilic syndrome. Blood 127, 948–951 (2016).
pubmed: 26702067
pmcid: 4760095
doi: 10.1182/blood-2015-06-654277
Campbell, T. M. et al. Respiratory viral infections in otherwise healthy humans with inherited IRF7 deficiency. J. Exp. Med. 219, e20220202 (2022).
pubmed: 35670811
pmcid: 9178406
doi: 10.1084/jem.20220202
Martin-Fernandez, M. et al. A partial form of inherited human USP18 deficiency underlies infection and inflammation. J. Exp. Med. 219, e20211273 (2022).
pubmed: 35258551
pmcid: 8908790
doi: 10.1084/jem.20211273
Gruber, C. et al. Homozygous STAT2 gain-of-function mutation by loss of USP18 activity in a patient with type I interferonopathy. J. Exp. Med. 217, e20192319 (2020).
pubmed: 32092142
pmcid: 7201920
doi: 10.1084/jem.20192319