Genomic characterization and molecular evolution of human monkeypox viruses.
Journal
Archives of virology
ISSN: 1432-8798
Titre abrégé: Arch Virol
Pays: Austria
ID NLM: 7506870
Informations de publication
Date de publication:
21 Oct 2023
21 Oct 2023
Historique:
received:
30
03
2023
accepted:
30
08
2023
medline:
1
11
2023
pubmed:
21
10
2023
entrez:
21
10
2023
Statut:
epublish
Résumé
Monkeypox virus is a member of the family Poxviridae, as are variola virus and vaccinia virus. It has a linear double-strand DNA genome approximately 197 kb long, containing ~190 non-overlapping ORFs. Comparison of members of the Central and West African clades shows the presence of unique genes that are associated with different disease presentations, depending on the strain. The last smallpox vaccination efforts ended in the mid-1980s, and there is concern about the recent spread of human monkeypox disease around the world. Almost 87,000 human monkeypox cases have been diagnosed in the world, of which more than 10,900 were in Brazil. The aim of this study was to evaluate the epidemiology and molecular evolution of hMpxV. From computational biology analysis of 640 hMpxV genomes from 1962 to 2022, synteny breaks and gene conservation were observed between Central and West clade genomes, and strains belonged with the 2022 outbreak assigned to the West African clade. Evidence was found for diversifying selective pressure at specific sites within protein coding sequences, acting on immunomodulatory processes. The existence of different sites under diversifying and purifying selection in paralog genes indicates adaptive mechanisms underlying the host-pathogen interaction of monkeypox virus in humans.
Identifiants
pubmed: 37864757
doi: 10.1007/s00705-023-05904-5
pii: 10.1007/s00705-023-05904-5
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
278Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
Aksamentov I, Roemer C, Hodcroft E, Neher R (2021) Nextclade: Clade assignment, mutation calling and quality control for viral genomes. J Open Source Softw 6(67):3773. https://doi.org/10.21105/joss.03773
doi: 10.21105/joss.03773
Bahar MW, Graham SC, Chen RA-J, Cooray S, Smith GL, Stuart DI, Grimes JM (2011) How vaccinia virus has evolved to subvert the host immune response. J Struct Biol 175(2):127–134. https://doi.org/10.1016/j.jsb.2011.03.010
doi: 10.1016/j.jsb.2011.03.010
pubmed: 21419849
pmcid: 3477310
Brennan G, Stoian AMM, Yu H, Rahman MJ, Banerjee S, Stroup JN, Park C, Tazi L, Rothenburg S (2023) Molecular mechanisms of poxvirus evolution. MBio 14(1):e01526-e1622. https://doi.org/10.1128/mbio.01526-22
doi: 10.1128/mbio.01526-22
pubmed: 36515529
Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14(7):1394–1403. https://doi.org/10.1101/gr.2289704
doi: 10.1101/gr.2289704
pubmed: 15231754
pmcid: 442156
Dumonteil E, Herrera C, Sabino-Santos G (2023) Monkeypox virus evolution before 2022 outbreak. Emerg Infect Dis 29(2):451–453. https://doi.org/10.3201/eid2902.220962
doi: 10.3201/eid2902.220962
pubmed: 36692511
pmcid: 9881786
Elde NC, Child SJ, Eickbush MT, Kitzman JO, Rogers KS, Shendure J, Geballe AP, Malik HS (2012) Poxviruses deploy genomic accordions to adapt rapidly against host antiviral defenses. Cell 150(4):831–841. https://doi.org/10.1016/j.cell.2012.05.049
doi: 10.1016/j.cell.2012.05.049
pubmed: 22901812
pmcid: 3499626
Estep RD, Messaoudi I, O’Connor MA, Li H, Sprague J, Barron A, Engelmann F, Yen B, Powers MF, Jones JM, Robinson BA, Orzechowska BU, Manoharan M, Legasse A, Planer S, Wilk J, Axthelm MK, Wong SW (2011) Deletion of the monkeypox virus inhibitor of complement enzymes locus impacts the adaptive immune response to monkeypox virus in a nonhuman primate model of infection. J Virol 85:9527–9542. https://doi.org/10.1128/JVI.00199-11
doi: 10.1128/JVI.00199-11
pubmed: 21752919
pmcid: 3165757
Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. https://doi.org/10.1186/s13059-019-1832-y
doi: 10.1186/s13059-019-1832-y
pubmed: 31727128
pmcid: 6857279
Finkel Y, Stern-Ginossar N, Schwartz M (2018) Viral short ORFs and their possible functions. Proteomics 18(10):1700255. https://doi.org/10.1002/pmic.201700255
doi: 10.1002/pmic.201700255
pubmed: 29150926
pmcid: 7167739
Gotz S, Garcia-Gomez JM, Terol J, Williams TD, Nagaraj SH, Nueda MJ, Robles M, Talon M, Dopazo J, Conesa A (2008) High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res 36(10):3420–3435. https://doi.org/10.1093/nar/gkn176
doi: 10.1093/nar/gkn176
pubmed: 18445632
pmcid: 2425479
Guan H, Gul I, Xiao C, Ma S, Liang Y, Yu D, Liu Y, Liu H, Zhang CY, Li J, Qin P (2023) Emergence, phylogeography, and adaptive evolution of mpox virus. New Microbes New Infect 52:101102. https://doi.org/10.1016/j.nmni.2023.101102
doi: 10.1016/j.nmni.2023.101102
pubmed: 36815201
pmcid: 9937731
Gubser C, Hué S, Kellam P, Smith GL (2004) Poxvirus genomes: a phylogenetic analysis. J Gen Virol 85(1):105–117. https://doi.org/10.1099/vir.0.19565-0
doi: 10.1099/vir.0.19565-0
pubmed: 14718625
Hammarlund E, Lewis MW, Carter SV, Amanna I, Hansen SG, Strelow LI, Wong SW, Yoshihara P, Hanifin JM, Slifka MK (2005) Multiple diagnostic techniques identify previously vaccinated individuals with protective immunity against monkeypox. Nat Med 11(9):1005–1011. https://doi.org/10.1038/nm1273
doi: 10.1038/nm1273
pubmed: 16086024
Hendrickson RC, Wang C, Hatcher EL, Lefkowitz EJ (2010) Orthopoxvirus genome evolution: the role of gene loss. Viruses 2(9):1933–1967. https://doi.org/10.3390/v2091933
doi: 10.3390/v2091933
pubmed: 21994715
pmcid: 3185746
Hudson PN, Self J, Weiss S, Braden Z, Xiao Y, Girgis NM, Emerson G, Hughes C, Sammons SA, Isaacs SN, Damon IK, Olson VA (2012) Elucidating the role of the complement control protein in monkeypox pathogenicity. PLoS ONE 7:e35086. https://doi.org/10.1371/journal.pone.0035086
doi: 10.1371/journal.pone.0035086
pubmed: 22496894
pmcid: 3322148
Isidro J, Borges V, Pinto M, Sobral D, Santos JD, Nunes A, Mixão V, Ferreira R, Santos D, Duarte S, Vieira L, Borrego MJ, Núncio S, de Carvalho IL, Pelerito A, Cordeiro R, Gomes JP (2022) Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med 28:1569–1572. https://doi.org/10.1038/s41591-022-01907-y
doi: 10.1038/s41591-022-01907-y
pubmed: 35750157
pmcid: 9388373
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14(6):587–589. https://doi.org/10.1038/nmeth.4285
doi: 10.1038/nmeth.4285
pubmed: 28481363
pmcid: 5453245
Kochneva G, Kolosova I, Maksyutova T, Ryabchikova E, Shchelkunov S (2005) Effects of deletions of kelch-like genes on cowpox virus biological properties. Adv Virol 150(9):1857–1870. https://doi.org/10.1007/s00705-005-0530-0
doi: 10.1007/s00705-005-0530-0
Kosakovsky Pond SL, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sites under selection. Mol Biol Evol 22(5):1208–1222. https://doi.org/10.1093/molbev/msi105
doi: 10.1093/molbev/msi105
pubmed: 15703242
Kugelman JR, Johnston SC, Mulembakani PM, Kisalu N, Lee MS, Koroleva G, McCarthy SE, Gestole MC, Wolfe ND, Fair JN, Schneider BS, Wright LL, Huggins J, Whitehouse CA, Wemakoy EO, Muyembe-Tamfum JJ, Hensley LE, Palacios GF, Rimoin AW (2014) Genomic variability of monkeypox virus among humans, Democratic Republic of the Congo. Emerg Infect Dis. https://doi.org/10.3201/eid2002.130118
doi: 10.3201/eid2002.130118
pubmed: 24457084
pmcid: 3901482
Kumar Roshan Nagar S, Haider S, Sood U, Ponnusamy K, Dhingra GG, Anand S, Dua A, Singh M, Kumar Roushan Sengar M, Singh IK, Lal R (2023) Monkeypox virus: phylogenomics, host–pathogen interactome and mutational cascade. Microb Genom 9:000987. https://doi.org/10.1099/mgen.0.000987
doi: 10.1099/mgen.0.000987
Lant S, Maluquer de Motes C (2021) Poxvirus interactions with the host ubiquitin system. Pathogens 10(8):1034. https://doi.org/10.3390/pathogens10081034
doi: 10.3390/pathogens10081034
pubmed: 34451498
pmcid: 8399815
Lee Y-R, Yuan W-C, Ho H-C, Chen C-H, Shih H-M, Chen R-H (2010) The Cullin 3 substrate adaptor KLHL20 mediates DAPK ubiquitination to control interferon responses. EMBO J 29(10):1748–1761. https://doi.org/10.1038/emboj.2010.62
doi: 10.1038/emboj.2010.62
pubmed: 20389280
pmcid: 2876967
Likos AM, Sammons SA, Olson VA, Frace AM, Li Y, Olsen-Rasmussen M, Davidson W, Galloway R, Khristova ML, Reynolds MG, Zhao H, Carroll DS, Curns A, Formenty P, Esposito JJ, Regnery RL, Damon IK (2005) A tale of two clades: monkeypox viruses. J Gen Virol 86(10):2661–2672. https://doi.org/10.1099/vir.0.81215-0
doi: 10.1099/vir.0.81215-0
pubmed: 16186219
Mosavi LK, Cammett TJ, Desrosiers DC, Peng Z (2004) The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13(6):1435–1448. https://doi.org/10.1110/ps.03554604
doi: 10.1110/ps.03554604
pubmed: 15152081
pmcid: 2279977
Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K (2013) FUBAR: a fast, unconstrained bayesian AppRoximation for inferring selection. Mol Biol Evol 30(5):1196–1205. https://doi.org/10.1093/molbev/mst030
doi: 10.1093/molbev/mst030
pubmed: 23420840
pmcid: 3670733
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2014) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274. https://doi.org/10.1093/molbev/msu300
doi: 10.1093/molbev/msu300
pubmed: 25371430
pmcid: 4271533
Pallett MA, Ren H, Zhang R-Y, Scutts SR, Gonzalez L, Zhu Z, Maluquer de Motes C, Smith GL (2019) Vaccinia virus BBK E3 ligase adaptor A55 targets importin-dependent NF-κB activation and inhibits CD8 + T-cell memory. J Virol. https://doi.org/10.1128/jvi.00051-19
doi: 10.1128/jvi.00051-19
pubmed: 30814284
pmcid: 6498060
Pueyo JI, Magny EG, Couso JP (2016) New peptides under the s(ORF)ace of the genome. Trends Biochem Sci 41(8):665–678. https://doi.org/10.1016/j.tibs.2016.05.003
doi: 10.1016/j.tibs.2016.05.003
pubmed: 27261332
Rambaut A, Lam TT, Max Carvalho L, Pybus OG (2016) Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol 2(1):vwe007. https://doi.org/10.1093/ve/vew007
doi: 10.1093/ve/vew007
Shchelkunov SN, Blinov VM, Sandakhchiev LS (1993) Ankyrin-like proteins of variola and vaccinia viruses. FEBS Lett 319(1–2):163–165. https://doi.org/10.1016/0014-5793(93)80059-4
doi: 10.1016/0014-5793(93)80059-4
pubmed: 8384122
Supek F, Bošnjak M, Škunca N, Šmuc T (2011) REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 6(7):e21800. https://doi.org/10.1371/journal.pone.0021800
doi: 10.1371/journal.pone.0021800
pubmed: 21789182
pmcid: 3138752
Tennessen JA (2008) Positive selection drives a correlation between non-synonymous/synonymous divergence and functional divergence. Bioinformatics 24(12):1421–1425. https://doi.org/10.1093/bioinformatics/btn205
doi: 10.1093/bioinformatics/btn205
pubmed: 18443017
Wang L, Shang J, Weng S, Aliyari SR, Ji C, Cheng G, Wu A (2022) Genomic annotation and molecular evolution of monkeypox virus outbreak in 2022. J Med Virol 2022:e28036. https://doi.org/10.1002/jmv.28036
doi: 10.1002/jmv.28036
Weaver JR, Isaacs SN (2008) Monkeypox virus and insights into its immunomodulatory proteins. Immunol Rev 225(1):96–113. https://doi.org/10.1111/j.1600-065x.2008.00691.x
doi: 10.1111/j.1600-065x.2008.00691.x
pubmed: 18837778
pmcid: 2567051
Werden SJ, Rahman MM, McFadden G (2008) Chapter 3 poxvirus host range genes. In: Advances in virus research. Elsevier, pp 135–171. https://doi.org/10.1016/S0065-3527(08)00003-1
Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591. https://doi.org/10.1093/molbev/msm088
doi: 10.1093/molbev/msm088
pubmed: 17483113
Yang Z, Nielsen R, Goldman N, Pedersen A-MK (2000) Codon-Substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155(1):431–449. https://doi.org/10.1093/genetics/155.1.431
doi: 10.1093/genetics/155.1.431
pubmed: 10790415
pmcid: 1461088
Yu X, Shi H, Cheng G (2023) Mpox virus: its molecular evolution and potential impact on viral epidemiology. Viruses 15(4):995. https://doi.org/10.3390/v15040995
doi: 10.3390/v15040995
pubmed: 37112975
pmcid: 10142743
Zhan X-Y, Zha G-F, He Y (2023) Evolutionary dissection of monkeypox virus: positive Darwinian selection drives the adaptation of virus–host interaction proteins. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2022.1083234
doi: 10.3389/fcimb.2022.1083234
pubmed: 37900322
pmcid: 10602873