Phospholipid transport to the bacterial outer membrane through an envelope-spanning bridge.


Journal

bioRxiv : the preprint server for biology
Titre abrégé: bioRxiv
Pays: United States
ID NLM: 101680187

Informations de publication

Date de publication:
05 Oct 2023
Historique:
pubmed: 24 10 2023
medline: 24 10 2023
entrez: 24 10 2023
Statut: epublish

Résumé

The outer membrane of Gram-negative bacteria provides a formidable barrier, essential for both pathogenesis and antimicrobial resistance. Biogenesis of the outer membrane requires the transport of phospholipids across the cell envelope. Recently, YhdP was implicated as a major protagonist in the transport of phospholipids from the inner membrane to the outer membrane however the molecular mechanism of YhdP mediated transport remains elusive. Here, utilising AlphaFold, we observe YhdP to form an elongated assembly of 60 β strands that curve to form a continuous hydrophobic groove. This architecture is consistent with our negative stain electron microscopy data which reveals YhdP to be approximately 250 Å in length and thus sufficient to span the bacterial cell envelope. Furthermore, molecular dynamics simulations and in vivo bacterial growth assays indicate essential helical regions at the N- and C-termini of YhdP, that may embed into the inner and outer membranes respectively, reinforcing its envelope spanning nature. Our in vivo crosslinking data reveal phosphate-containing substrates captured along the length of the YhdP groove, providing direct evidence that YhdP transports phospholipids. This finding is congruent with our molecular dynamics simulations which demonstrate the propensity for inner membrane lipids to spontaneously enter the groove of YhdP. Collectively, our results support a model in which YhdP bridges the cell envelope, providing a hydrophobic environment for the transport of phospholipids to the outer membrane.

Identifiants

pubmed: 37873249
doi: 10.1101/2023.10.05.561070
pmc: PMC10592960
pii:
doi:

Types de publication

Preprint

Langues

eng

Références

J Bacteriol. 1996 Mar;178(6):1770-3
pubmed: 8626309
Nat Microbiol. 2017 Dec;2(12):1616-1623
pubmed: 29038444
Nucleic Acids Res. 2021 Jan 8;49(D1):D344-D354
pubmed: 33156333
Nucleic Acids Res. 2012 Jan;40(Database issue):D370-6
pubmed: 21890895
IUCrJ. 2017 Sep 26;4(Pt 6):751-757
pubmed: 29123677
J Chem Phys. 2007 Jan 7;126(1):014101
pubmed: 17212484
BMC Bioinformatics. 2017 Nov 29;18(1):529
pubmed: 29187165
Trends Cell Biol. 2022 Nov;32(11):962-974
pubmed: 35491307
Nucleic Acids Res. 2019 Jan 8;47(D1):D390-D397
pubmed: 30418645
J Bacteriol. 2003 Oct;185(20):6112-8
pubmed: 14526023
J Biol Chem. 2018 Jul 20;293(29):11325-11340
pubmed: 29848551
FEBS J. 2022 Nov;289(22):7113-7127
pubmed: 34783437
J Chem Theory Comput. 2015 Sep 8;11(9):4486-94
pubmed: 26575938
Protein Sci. 2019 Jun;28(6):1005-1012
pubmed: 30993752
J Comput Chem. 2011 Jul 30;32(10):2319-27
pubmed: 21500218
Cell. 2017 Apr 6;169(2):273-285.e17
pubmed: 28388411
Nat Rev Microbiol. 2016 Jun;14(6):337-45
pubmed: 27026255
Contact (Thousand Oaks). 2023 Jul 12;6:25152564231185931
pubmed: 37455811
Front Bioeng Biotechnol. 2021 Jan 25;8:629937
pubmed: 33569377
J Mol Biol. 2018 Jul 20;430(15):2237-2243
pubmed: 29258817
Proc Natl Acad Sci U S A. 2021 Apr 20;118(16):
pubmed: 33850023
Nat Methods. 2022 Jun;19(6):679-682
pubmed: 35637307
J Bacteriol. 2009 Jun;191(11):3615-22
pubmed: 19346309
J Comput Chem. 2017 Oct 15;38(27):2354-2363
pubmed: 28776689
Mol Syst Biol. 2006;2:2006.0008
pubmed: 16738554
Elife. 2016 Aug 16;5:
pubmed: 27529189
mBio. 2023 Apr 25;14(2):e0002823
pubmed: 36856409
J Chem Theory Comput. 2016 Jan 12;12(1):405-13
pubmed: 26631602
Cell Discov. 2020 Nov 19;6(1):86
pubmed: 33298869
J Phys Chem B. 1998 Apr 30;102(18):3586-616
pubmed: 24889800
Proc Natl Acad Sci U S A. 2018 Sep 4;115(36):E8518-E8527
pubmed: 30087182
Proc Natl Acad Sci U S A. 2009 May 12;106(19):8009-14
pubmed: 19383799
Nature. 2021 Aug;596(7873):583-589
pubmed: 34265844
J Struct Biol. 2022 Dec;214(4):107896
pubmed: 36084896
Nucleic Acids Res. 2022 Jan 7;50(D1):D439-D444
pubmed: 34791371
Protein Sci. 2021 Jan;30(1):70-82
pubmed: 32881101
J Comput Chem. 2009 Jul 30;30(10):1545-614
pubmed: 19444816
J Comput Chem. 2008 Aug;29(11):1859-65
pubmed: 18351591
Structure. 2008 Apr;16(4):621-30
pubmed: 18400182
Cell. 2020 Apr 30;181(3):653-664.e19
pubmed: 32359438
Proc Natl Acad Sci U S A. 2020 Oct 27;117(43):26907-26914
pubmed: 33046656
Elife. 2020 Nov 25;9:
pubmed: 33236984
Microbiol Mol Biol Rev. 2003 Dec;67(4):593-656
pubmed: 14665678
J Biol Chem. 2023 Jun;299(6):104744
pubmed: 37100290
Gene. 1995 May 26;158(1):9-14
pubmed: 7789817
mBio. 2018 Aug 7;9(4):
pubmed: 30087168
J Cell Biol. 2020 May 4;219(5):
pubmed: 32182622
mBio. 2021 Dec 21;12(6):e0271421
pubmed: 34781743
EMBO J. 1995 Jul 17;14(14):3365-72
pubmed: 7628437
Cell Res. 2020 Dec;30(12):1127-1135
pubmed: 32884137
Elife. 2020 Jun 30;9:
pubmed: 32602838
Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2301979120
pubmed: 37155911
Structure. 2017 Dec 5;25(12):1898-1906.e5
pubmed: 29129383
J Chem Theory Comput. 2009 Sep 8;5(9):2531-43
pubmed: 26616630
Curr Opin Struct Biol. 2022 Oct;76:102429
pubmed: 35981415
J Phys Chem Lett. 2017 Nov 16;8(22):5513-5518
pubmed: 29053278
Science. 2012 Nov 30;338(6111):1214-7
pubmed: 23138981
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5363-8
pubmed: 20203010
Curr Opin Cell Biol. 2020 Aug;65:66-71
pubmed: 32213462
Elife. 2020 Sep 03;9:
pubmed: 32880370
Proc Natl Acad Sci U S A. 1980 Apr;77(4):1867-71
pubmed: 6246510
PLoS Genet. 2022 Feb 28;18(2):e1010096
pubmed: 35226662
Nat Struct Mol Biol. 2021 Jan;28(1):81-91
pubmed: 33199922
BMC Mol Cell Biol. 2019 Oct 14;20(1):43
pubmed: 31607262
Elife. 2019 Jan 14;8:
pubmed: 30638443
Nat Struct Mol Biol. 2012 Apr 01;19(5):506-10, S1
pubmed: 22466966
Elife. 2017 Mar 29;6:
pubmed: 28355133
Biochemistry. 2010 Jun 8;49(22):4565-7
pubmed: 20446753
Proc Natl Acad Sci U S A. 2016 Mar 15;113(11):E1565-74
pubmed: 26929379
Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11020-4
pubmed: 12154230
Biochemistry. 2019 Jan 15;58(2):114-119
pubmed: 30284446
Nat Microbiol. 2019 Oct;4(10):1692-1705
pubmed: 31235958
Nucleic Acids Res. 2018 Jul 2;46(W1):W368-W373
pubmed: 29718451
J Chem Theory Comput. 2022 Feb 8;18(2):1188-1201
pubmed: 35020380
Biophys J. 2012 Nov 21;103(10):2115-24
pubmed: 23200045
Nat Commun. 2019 Sep 13;10(1):4175
pubmed: 31519889
Protein Sci. 2018 Jan;27(1):14-25
pubmed: 28710774
Elife. 2020 Nov 04;9:
pubmed: 33146611
J Chem Theory Comput. 2013 Jan 8;9(1):687-97
pubmed: 26589065
Mol Microbiol. 2015 Dec;98(6):1133-46
pubmed: 26314242
Nature. 2019 Mar;567(7749):486-490
pubmed: 30894744

Auteurs

Benjamin F Cooper (BF)

Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.

Robert Clark (R)

Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.

Anju Kudhail (A)

Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.

Gira Bhabha (G)

Department of Cell Biology, New York University School of Medicine, New York, NY, 10016.

Damian C Ekiert (DC)

Department of Cell Biology, New York University School of Medicine, New York, NY, 10016.
Department of Microbiology, New York University School of Medicine, New York, NY, 10016.

Syma Khalid (S)

Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.

Georgia L Isom (GL)

Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.

Classifications MeSH