Culture-independent analyses of carrion beetle (Coleoptera: Silphidae) secretion bacterial communities.
Nicrophorus
Silphidae
burying beetle
carrion beetle
Journal
Microbiology spectrum
ISSN: 2165-0497
Titre abrégé: Microbiol Spectr
Pays: United States
ID NLM: 101634614
Informations de publication
Date de publication:
24 Oct 2023
24 Oct 2023
Historique:
medline:
24
10
2023
pubmed:
24
10
2023
entrez:
24
10
2023
Statut:
aheadofprint
Résumé
In the central plains of North America, the beetle family Silphidae comprised two subfamilies, Silphinae and Nicrophorinae, differentiated by reproductive behaviors. Silphinae, known as carrion beetles, feed on carrion and fly larvae and produce free-living larvae that receive no parental care. Adult Nicrophorinae, known as burying beetles, prepare a vertebrate carcass into a brood ball and provide biparental care to their offspring. Preparation of a brood ball involves coating the carcass in antimicrobial oral and anal secretions. These secretions contain a community of microbes, referred to as the secretion microbiome, which inhibit carcass microbe succession, preventing normal decomposition. Here, the secretion microbiomes of five species of Nicrophorinae and two species of Silphinae, both sampled from Oklahoma, with additional Nicrophorinae from Nebraska, were characterized using culture-independent analyses to understand and decipher factors shaping diversity and community structure. We identify the core secretion microbiome across Silphidae and show that, while the host subfamily, secretion type, and collection locality had no significant effect on the bacterial community alpha diversity, these factors significantly influenced bacterial community structure. Global and local tests of phylogenetic associations identified 14 genera with phylogenetic signals to the host subfamily and species. Description of the bacterial communities present in silphid secretions furthers our understanding of how these beetles interact with microbes for carcass nutrient processing. Future culture-dependent studies from silphid secretions may identify novel antimicrobials and nontoxic compounds that can act as meat preservatives or sources for antimicrobials.IMPORTANCEThe manuscript explores the secretion bacterial community of carrion and burying beetles of the central plains of North America. A core secretion microbiome of 11 genera is identified. The host subfamily, secretion type, and collection locality significantly affects the secretion microbiome. Future culture-dependent studies from silphid secretions may identify novel antimicrobials and nontoxic compounds that can act as meat preservatives or sources for antimicrobials.
Identifiants
pubmed: 37874151
doi: 10.1128/spectrum.01694-23
pmc: PMC10714842
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0169423Références
R Soc Open Sci. 2022 Mar 23;9(3):211771
pubmed: 35345430
Sci Rep. 2016 May 03;6:25409
pubmed: 27139635
Environ Microbiol. 2010 Jul;12(7):1889-98
pubmed: 20236171
Evolution. 2008 Aug;62(8):2065-79
pubmed: 18507741
PLoS One. 2019 Dec 2;14(12):e0225711
pubmed: 31790470
Proc Natl Acad Sci U S A. 2021 Nov 23;118(47):
pubmed: 34799446
Antonie Van Leeuwenhoek. 2021 Jun;114(6):687-696
pubmed: 33715106
Int J Syst Evol Microbiol. 2017 Jul;67(7):2363-2369
pubmed: 28699867
Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):11274-11279
pubmed: 30322931
Environ Entomol. 2011 Jun;40(3):669-78
pubmed: 22251646
Antonie Van Leeuwenhoek. 2015 Jul;108(1):151-61
pubmed: 25980832
Nat Microbiol. 2021 Nov;6(11):1443-1454
pubmed: 34702978
Mol Ecol. 2014 Mar;23(6):1251-1267
pubmed: 24102980
Front Biosci (Elite Ed). 2022 Aug 18;14(3):22
pubmed: 36137987
Ecol Evol. 2019 Nov 12;9(23):13202-13217
pubmed: 31871639
Int J Syst Evol Microbiol. 2019 May;69(5):1438-1442
pubmed: 30893028
Curr Microbiol. 2021 Aug;78(8):3313-3320
pubmed: 34165609
Antonie Van Leeuwenhoek. 2013 Jul;104(1):1-24
pubmed: 23575986
Mol Ecol. 2018 Apr;27(8):1980-1991
pubmed: 28748615
Anim Microbiome. 2021 Apr 23;3(1):33
pubmed: 33892813
Front Microbiol. 2021 Jun 22;12:633075
pubmed: 34239504
J Anim Ecol. 2018 Mar;87(2):414-427
pubmed: 28682460
Appl Environ Microbiol. 2009 Dec;75(23):7537-41
pubmed: 19801464
Front Microbiol. 2019 May 31;10:1178
pubmed: 31244787
Int J Syst Evol Microbiol. 2011 May;61(Pt 5):1023-1027
pubmed: 20511460
Mol Biol Evol. 2022 Aug 06;:
pubmed: 35932227
Nat Commun. 2018 Jan 15;9(1):205
pubmed: 29335414
Proc Natl Acad Sci U S A. 2014 Sep 30;111(39):14170-4
pubmed: 25225362
FEMS Microbiol Rev. 2007 Sep;31(5):592-613
pubmed: 17696886
J Anim Ecol. 2019 Nov;88(11):1684-1695
pubmed: 31325164
J Evol Biol. 2007 Nov;20(6):2389-99
pubmed: 17956400
J Chem Ecol. 2004 Apr;30(4):719-29
pubmed: 15260219
PLoS One. 2018 Apr 4;13(4):e0194365
pubmed: 29617406
PLoS One. 2009 Oct 09;4(10):e7401
pubmed: 19816594
Int J Syst Evol Microbiol. 2016 May;66(5):1956-1961
pubmed: 26873062
mSystems. 2022 Apr 26;7(2):e0004422
pubmed: 35253476
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17890-5
pubmed: 19001269
J Med Entomol. 1989 Jul;26(4):354-9
pubmed: 2769717
Eur J Clin Microbiol Infect Dis. 2013 Nov;32(11):1471-81
pubmed: 23728738
Nat Med. 2018 Oct;24(10):1495-1496
pubmed: 30275567
Nat Commun. 2017 May 09;8:15186
pubmed: 28485370
Microbiome. 2018 Aug 24;6(1):147
pubmed: 30143055
Int J Syst Evol Microbiol. 2016 Aug;66(8):3063-3070
pubmed: 27169721
Mol Ecol. 2023 Jan;32(2):518-536
pubmed: 36325817