Enhanced transformation efficiency in Treponema denticola enabled by SyngenicDNA-based plasmids lacking restriction-modification target motifs.


Journal

Molecular oral microbiology
ISSN: 2041-1014
Titre abrégé: Mol Oral Microbiol
Pays: Denmark
ID NLM: 101524770

Informations de publication

Date de publication:
Dec 2023
Historique:
revised: 25 09 2023
received: 09 08 2023
accepted: 08 10 2023
medline: 30 11 2023
pubmed: 26 10 2023
entrez: 26 10 2023
Statut: ppublish

Résumé

Oral spirochetes are among a small group of keystone pathogens contributing to dysregulation of tissue homeostatic processes that leads to breakdown of the tissue and bone supporting the teeth in periodontal disease. Additionally, our group has recently demonstrated that Treponema are among the dominant microbial genera detected intracellularly in tumor specimens from patients with oral squamous cell carcinoma. While over 60 species and phylotypes of oral Treponema have been detected, T. denticola is one of the few that can be grown in culture and the only one in which genetic manipulation is regularly performed. Thus, T. denticola is a key model organism for studying spirochete metabolic processes, interactions with other microbes, and host cell and tissue responses relevant to oral diseases, as well as venereal and nonvenereal treponematoses whose agents lack workable genetic systems. We previously demonstrated improved transformation efficiency using an Escherichia coli-T. denticola shuttle plasmid and its utility for expression in T. denticola of an exogenous fluorescent protein that is active under anaerobic conditions. Here, we expand on this work by characterizing T. denticola Type I and Type II restriction-modification (R-M) systems and designing a high-efficiency R-M-silent "SyngenicDNA" shuttle plasmid resistant to all T. denticola ATCC 35405 R-M systems. Resequencing of the ATCC 33520 genome revealed an additional Type I R-M system consistent with the relatively low transformation efficiency of the shuttle plasmid in this strain. Using SyngenicDNA approaches, we optimized shuttle plasmid transformation efficiency in T. denticola and used it to complement a defined T. denticola ΔfhbB mutant strain. We further report the first high-efficiency transposon mutagenesis of T. denticola using an R-M-silent, codon-optimized, himarC9 transposase-based plasmid. Thus, use of SyngenicDNA-based strategies and tools can enable further mechanistic examinations of T. denticola physiology and behavior.

Identifiants

pubmed: 37880921
doi: 10.1111/omi.12441
doi:

Substances chimiques

Bacterial Proteins 0

Types de publication

Journal Article

Langues

eng

Pagination

455-470

Subventions

Organisme : NIDCR NIH HHS
ID : R01 DE025225
Pays : United States
Organisme : NIDCR NIH HHS
ID : R01 DE027850
Pays : United States

Informations de copyright

© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Références

Armitage, G. C., Dickinson, W. R., Jenderseck, R. S., Levine, S. M., & Chambers, D. W. (1982). Relationship between the percentage of subgingival spirochetes and the severity of periodontal disease. Journal of Periodontology, 53(9), 550-556. https://doi.org/10.1902/jop.1982.53.9.550
Bian, J., Fenno, J. C., & Li, C. (2012). Development of a modified gentamicin resistance cassette for genetic manipulation of the oral spirochete Treponema denticola. Applied and Environmental Microbiology, 78(6), 2059-2062. https://doi.org/10.1128/AEM.07461-11
Bian, J., & Li, C. (2011). Disruption of a type II endonuclease (TDE0911) enables Treponema denticola ATCC 35405 to accept an unmethylated shuttle vector. Applied and Environmental Microbiology, 77(13), 4573-4578. https://doi.org/10.1128/AEM.00417-11
Bian, X.-L., Wang, H.-T., Ning, Y., Lee, S. Y., & Fenno, J. C. (2005). Mutagenesis of a novel gene in the prcA-prtP protease locus affects expression of Treponema denticola membrane complexes. Infection and Immunity, 73(2), 1252-1255. https://doi.org/10.1128/IAI.73.2.1252-1255.2005
Blow, M. J., Clark, T. A., Daum, C. G., Deutschbauer, A. M., Fomenkov, A., Fries, R., Froula, J., Kang, D. D., Malmstrom, R. R., Morgan, R. D., Posfai, J., Singh, K., Visel, A., Wetmore, K., Zhao, Z., Rubin, E. M., Korlach, J., Pennacchio, L. A., & Roberts, R. J. (2016). The epigenomic landscape of prokaryotes. PLoS Genetics, 12(2), Article e1005854. https://doi.org/10.1371/journal.pgen.1005854
Chao, M. C., Abel, S., Davis, B. M., & Waldor, M. K. (2016). The design and analysis of transposon insertion sequencing experiments. Nature Reviews Microbiology, 14(2), 119-128. https://doi.org/10.1038/nrmicro.2015.7
Chi, B., Chauhan, S., & Kuramitsu, H. K. (1999). Development of a system for expressing heterologous genes in the oral spirochete Treponema denticola and its use in expression of the Treponema pallidum flaA gene. Infection and Immunity, 67(7), 3653-3656. https://doi.org/10.1128/IAI.67.7.3653-3656.1999
Chi, B., Limberger, R. J., & Kuramitsu, H. K. (2002). Complementation of a Treponema denticola flgE mutant with a novel coumermycin A1-resistant T. denticola shuttle vector system. Infection and Immunity, 70(4), 2233-2237. https://doi.org/10.1128/IAI.70.4.2233-2237.2002
De Ste Croix, M., Vacca, I., Kwun, M. J., Ralph, J. D., Bentley, S. D., Haigh, R., Croucher, N. J., & Oggioni, M. R. (2017). Phase-variable methylation and epigenetic regulation by type I restriction-modification systems. FEMS Microbiology Review, 41(Supp_1), S3-S15. https://doi.org/10.1093/femsre/fux025
Drepper, T., Eggert, T., Circolone, F., Heck, A., Krauss, U., Guterl, J. K., Wendorff, M., Losi, A., Gärtner, W., & Jaeger, K. E. (2007). Reporter proteins for in vivo fluorescence without oxygen. Nature Biotechnology, 25(4), 443-445. https://doi.org/10.1038/nbt1293
Edmondson, D. G., Hu, B., & Norris, S. J. (2018). Long-term in vitro culture of the syphilis spirochete Treponema pallidum subsp. pallidum. mBio, 9(3), Article e01153-18 https://doi.org/10.1128/mBio.01153-18
Ellen, R. P., & Galimanas, V. B. (2005). Spirochetes at the forefront of periodontal infections. Periodontology 2000, 38, 13-32. https://doi.org/10.1111/j.1600-0757.2005.00108.x
Fenno, J. C. (2005). Laboratory maintenance of Treponema denticola. Current Protocols in Microbiology, https://doi.org/10.1002/9780471729259.mc12b01s00
Fletcher, H. M., Schenkein, H. A., Morgan, R. M., Bailey, K. A., Berry, C. R., & Macrina, F. L. (1995). Virulence of a Porphyromonas gingivalis W83 mutant defective in the prtH gene. Infection & Immunity, 63(4), 1521-1528. https://doi.org/10.1128/iai.63.4.1521-1528.1995
Flusberg, B. A., Webster, D. R., Lee, J. H., Travers, K. J., Olivares, E. C., Clark, T. A., Korlach, J., & Turner, S. W. (2010). Direct detection of DNA methylation during single-molecule, real-time sequencing. Nature Methods, 7(6), 461-465. https://doi.org/10.1038/nmeth.1459
Galeano Nino, J. L., Wu, H., LaCourse, K. D., Kempchinsky, A. G., Baryiames, A., Barber, B., Futran, N., Houlton, J., Sather, C., Sicinska, E., Taylor, A., Minot, S. S., Johnston, C. D., & Bullman, S. (2022). Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer. Nature, 611(7937), 810-817. https://doi.org/10.1038/s41586-022-05435-0
Godovikova, V., Goetting-Minesky, M. P., Shin, J. M., Kapila, Y. L., Rickard, A. H., & Fenno, J. C. (2015). A modified shuttle plasmid facilitates expression of a flavin mononucleotide-based fluorescent protein in Treponema denticola ATCC 35405. Applied and Environmental Microbiology, 81(18), 6496-6504. https://doi.org/10.1128/AEM.01541-15
Goetting-Minesky, M. P., & Fenno, J. C. (2010). A simplified erythromycin resistance cassette for Treponema denticola mutagenesis. Journal of Microbiological Methods, 83(1), 66-68. https://doi.org/10.1016/j.mimet.2010.07.020
Grote, A., Hiller, K., Scheer, M., Munch, R., Nortemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Suppl_2), W526-W531. https://doi.org/10.1093/nar/gki376
Hajishengallis, G., & Lamont, R. J. (2012). Beyond the red complex and into more complexity: The polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Molecular oral Microbiology, 27(6), 409-419. https://doi.org/10.1111/j.2041-1014.2012.00663.x
Heaton, B. E., Herrou, J., Blackwell, A. E., Wysocki, V. H., & Crosson, S. (2012). Molecular structure and function of the novel BrnT/BrnA toxin-antitoxin system of Brucella abortus. Journal of Biological Chemistry, 287(15), 12098-12110. https://doi.org/10.1074/jbc.M111.332163
Held, K., Ramage, E., Jacobs, M., Gallagher, L., & Manoil, C. (2012). Sequence-verified two-allele transposon mutant library for Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 194(23), 6387-6389. https://doi.org/10.1128/JB.01479-12
Hobson, N., Price, N. L., Ward, J. D., & Raivio, T. L. (2008). Generation of a restriction minus enteropathogenic Escherichia coli E2348/69 strain that is efficiently transformed with large, low copy plasmids. BMC Microbiology, 8, Article 134. https://doi.org/10.1186/1471-2180-8-134
Huang, X., Wang, J., Li, J., Liu, Y., Liu, X., Li, Z., Kurniyati, K., Deng, Y., Wang, G., Ralph, J. D., De Ste Croix, M., Escobar-Gonzalez, S., Roberts, R. J., Veening, J.-W., Lan, X., Oggioni, M. R., Li, C., & Zhang, J. R. (2020). Prevalence of phase variable epigenetic invertons among host-associated bacteria. Nucleic Acids Research, 48(20), 11468-11485. https://doi.org/10.1093/nar/gkaa907
Izard, J., Hsieh, C. E., Limberger, R. J., Mannella, C. A., & Marko, M. (2008). Native cellular architecture of Treponema denticola revealed by cryo-electron tomography. Journal of Structural Biology, 163(1), 10-17. https://doi.org/10.1016/j.jsb.2008.03.009
Izard, J., Renken, C., Hsieh, C. E., Desrosiers, D. C., Dunham-Ems, S., La Vake, C., Gebhardt, L. L., Limberger, R. J., Cox, D. L., Marko, M., & Radolf, J. D. (2009). Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete. Journal of Bacteriology, 191(24), 7566-7580. https://doi.org/10.1128/JB.01031-09
Johnston, C. D., Cotton, S. L., Rittling, S. R., Starr, J. R., Borisy, G. G., Dewhirst, F. E., & Lemon, K. P. (2019). Systematic evasion of the restriction-modification barrier in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 116(23), 11454-11459. https://doi.org/10.1073/pnas.1820256116
Kawabata, H., Norris, S. J., & Watanabe, H. (2004). BBE02 disruption mutants of Borrelia burgdorferi B31 have a highly transformable, infectious phenotype. Infection and Immunity, 72(12), 7147-7154. https://doi.org/10.1128/IAI.72.12.7147-7154.2004
Kinder Haake, S., Yoder, S., & Gerardo, S. H. (2006). Efficient gene transfer and targeted mutagenesis in Fusobacterium nucleatum. Plasmid, 55(1), 27-38. https://doi.org/10.1016/j.plasmid.2005.06.002
Kuramitsu, H. K., Chi, B., & Ikegami, A. (2005). Genetic manipulation of Treponema denticola. Current Protocols in Microbiology, https://doi.org/10.1002/9780471729259.mc12b02s00
Kurniyati, K., & Li, C. (2016). pyrF as a counterselectable marker for unmarked genetic manipulations in Treponema denticola. Applied and Environmental Microbiology, 82(4), 1346-1352. https://doi.org/10.1128/AEM.03704-15
Kurniyati, K., Liu, J., Zhang, J. R., Min, Y., & Li, C. (2019). A pleiotropic role of FlaG in regulating the cell morphogenesis and flagellar homeostasis at the cell poles of Treponema denticola. Cellular Microbiology, 21(2), Article e12886. https://doi.org/10.1111/cmi.12886
Kurniyati, K., Zhang, W., Zhang, K., & Li, C. (2013). A surface-exposed neuraminidase affects complement resistance and virulence of the oral spirochaete Treponema denticola. Molecular Microbiology, 89(5), 842-856. https://doi.org/10.1111/mmi.12311
Li, C., Wen, A., Shen, B., Lu, J., Huang, Y., & Chang, Y. (2011). FastCloning: A highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotechnology, 11, Article 92. https://doi.org/10.1186/1472-6750-11-92
Li, H., Ruby, J., Charon, N., & Kuramitsu, H. (1996). Gene inactivation in the oral spirochete Treponema denticola: Construction of an flgE mutant. Journal of Bacteriology, 178(12), 3664-3667. https://doi.org/10.1128/jb.178.12.3664-3667.1996
Li, Y., Ruby, J., & Wu, H. (2015). Kanamycin resistance cassette for genetic manipulation of Treponema denticola. Applied and Environmental Microbiology, 81(13), 4329-4338. https://doi.org/10.1128/AEM.00478-15
Listgarten, M. A., Lindhe, J., & Hellden, L. (1978). Effect of tetracycline and/or scaling on human periodontal disease: Clinical, microbiological, and histological observations. Journal of Clinical Periodontology, 5(4), 246-271. https://doi.org/10.1111/j.1600-051x.1978.tb01918.x
Loesche, W. J., & Laughon, B. E. (1982). Role of spirochetes in periodontal disease. In R. J. Genco & S. E. Mergenhagen (Eds.), Host-parasite interactions in periodontal diseases (pp. 62-75). American Society for Microbiology.
MacDougall, J., Margarita, D., & Saint Girons, I. (1992). Homology of a plasmid from the spirochete Treponema denticola with the single-stranded DNA plasmids. Journal of Bacteriology, 174(8), 2724-2728. https://doi.org/10.1128/jb.174.8.2724-2728.1992
Macrina, F. L., Tobian, J. A., Jones, K. R., Evans, R. P., & Clewell, D. B. (1982). A cloning vector able to replicate in Escherichia coli and Streptococcus sanguis. Gene, 19(3), 345-353. https://doi.org/10.1016/0378-1119(82)90025-7
McDowell, J. V., Frederick, J., Goodman, M. P., Goetting-Minesky, M. P., Miller, D. P., Fenno, J. C., & Marconi, R. T. (2011). Identification of the primary mechanism of complement evasion by the periodontal pathogen, Treponema denticola. Molecular Oral Microbiology, 26(2), 140-149. https://doi.org/10.1111/j.2041-1014.2010.00598.x
McMinn, M. T., & Crawford, J. J. (1970). Recovery of anaerobic microorganisms from clinical specimens in prereduced media versus recovery by routine clinical laboratory methods. Applied Microbiology, 19(2), 207-213. https://doi.org/10.1128/am.19.2.207-213.1970
Mead, D. A., Szczesna-Skorupa, E., & Kemper, B. (1986). Single-stranded DNA ‘blue’ T7 promoter plasmids: A versatile tandem promoter system for cloning and protein engineering. Protein Engineering, 1(1), 67-74. https://doi.org/10.1093/protein/1.1.67
Mousques, T., Listgarten, M. A., & Phillips, R. W. (1980). Effect of scaling and root planing on the composition of the human subgingival microbial flora. Journal of Periodontal Research, 15(2), 144-151. https://doi.org/10.1111/j.1600-0765.1980.tb00268.x
Murray, I. A., Clark, T. A., Morgan, R. D., Boitano, M., Anton, B. P., Luong, K., Fomenkov, A., Turner, S. W., Korlach, J., & Roberts, R. J. (2012). The methylomes of six bacteria. Nucleic Acids Research, 40(22), 11450-11462. https://doi.org/10.1093/nar/gks891
Murray, N. E. (2000). Type I restriction systems: Sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiology and Molecular Biology Reviews, 64(2), 412-434. https://doi.org/10.1128/MMBR.64.2.412-434.2000
Orsel, K., Plummer, P., Shearer, J., De Buck, J., Carter, S. D., Guatteo, R., & Barkema, H. W. (2018). Missing pieces of the puzzle to effectively control digital dermatitis. Transboundary and Emerging Diseases, 65(Suppl 1), 186-198. https://doi.org/10.1111/tbed.12729
Paster, B. J., Boches, S. K., Galvin, J. L., Ericson, R. E., Lau, C. N., Levanos, V. A., Sahasrabudhe, A., & Dewhirst, F. E. (2001). Bacterial diversity in human subgingival plaque. Journal of Bacteriology, 183(12), 3770-3783. https://doi.org/10.1128/JB.183.12.3770-3783.2001
Peng, R. T., Sun, Y., Zhou, X. D., Liu, S. Y., Han, Q., Cheng, L., & Peng, X. (2022). Treponema denticola promotes OSCC development via the TGF-beta signaling pathway. Journal of Dental Research, 101(6), 704-713. https://doi.org/10.1177/00220345211067401
Radolf, J. D., & Kumar, S. (2018). The Treponema pallidum outer membrane. In B. Adler (Ed.), Spirochete biology: The post genomic era (Current topics in microbiology and immunology) (Vol. 415, pp. 1-38). Springer. https://doi.org/10.1007/82_2017_44
Roberts, R. J., Vincze, T., Posfai, J., & Macelis, D. (2015). REBASE-A database for DNA restriction and modification: Enzymes, genes and genomes. Nucleic Acids Research, 43(Database issue), D298-D299. https://doi.org/10.1093/nar/gku1046
Romeis, E., Tantalo, L., Lieberman, N., Phung, Q., Greninger, A., & Giacani, L. (2021). Genetic engineering of Treponema pallidum subsp. pallidum, the Syphilis Spirochete. PLoS Pathogens, 17(7), Article e1009612. https://doi.org/10.1371/journal.ppat.1009612
Rubin, E. J., Akerley, B. J., Novik, V. N., Lampe, D. J., Husson, R. N., & Mekalanos, J. J. (1999). In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proceedings of the National Academy of Sciences of the United States of America, 96(4), 1645-1650. https://doi.org/10.1073/pnas.96.4.1645
Salama, N. R., & Manoil, C. (2006). Seeking completeness in bacterial mutant hunts. Current Opinion in Microbiology, 9(3), 307-311. https://doi.org/10.1016/j.mib.2006.03.002
Seib, K. L., Srikhanta, Y. N., Atack, J. M., & Jennings, M. P. (2020). Epigenetic regulation of virulence and immunoevasion by phase-variable restriction-modification systems in bacterial pathogens. Annual Review of Microbiology, 74, 655-671. https://doi.org/10.1146/annurev-micro-090817-062346
Seshadri, R., Myers, G. S., Tettelin, H., Eisen, J. A., Heidelberg, J. F., Dodson, R. J., Davidsen, T. M., DeBoy, R. T., Fouts, D. E., Haft, D. H., Selengut, J., Ren, Q., Brinkac, L. M., Madupu, R., Kolonay, J., Durkin, S. A., Daugherty, S. C., Shetty, J., Shvartsbeyn, A., … Paulsen, I. T. (2004). Comparison of the genome of the oral pathogen Treponema denticola with other spirochete genomes. Proceedings of the National Academy of Sciences of the United States of America, 101(15), 5646-5651. https://doi.org/10.1073/pnas.0307639101
Slivienski-Gebhardt, L. L., Izard, J., Samsonoff, W. A., & Limberger, R. J. (2004). Development of a novel chloramphenicol resistance expression plasmid used for genetic complementation of a fliG deletion mutant in Treponema denticola. Infection and Immunity, 72(9), 5493-5497. https://doi.org/10.1128/IAI.72.9.5493-5497.2004
Stewart, P. E., Hoff, J., Fischer, E., Krum, J. G., & Rosa, P. A. (2004). Genome-wide transposon mutagenesis of Borrelia burgdorferi for identification of phenotypic mutants. Applied and Environmental Microbiology, 70(10), 5973-5979. https://doi.org/10.1128/AEM.70.10.5973-5979.2004
Vences-Guzman, M. A., Goetting-Minesky, M. P., Guan, Z., Castillo-Ramirez, S., Cordoba-Castro, L. A., Lopez-Lara, I. M., Geiger, O., Sohlenkamp, C., & Fenno, J. C. (2017). 1,2-Diacylglycerol choline phosphotransferase catalyzes the final step in the unique Treponema denticola phosphatidylcholine biosynthesis pathway. Molecular Microbiology, 103(5), 896-912. https://doi.org/10.1111/mmi.13596
Waldron, D. E., & Lindsay, J. A. (2006). Sau1: A novel lineage-specific type I restriction-modification system that blocks horizontal gene transfer into Staphylococcus aureus and between S. aureus isolates of different lineages. Journal of Bacteriology, 188(15), 5578-5585. https://doi.org/10.1128/JB.00418-06
Wang, J., Wang, Y., Wu, H., Wang, Z. Y., Shen, P. C., Tian, Y. Q., Sun, F., Pan, Z.-M., & Jiao, X. (2020). Coexistence of bla (OXA-58) and tet(X) on a novel plasmid in Acinetobacter sp. from pig in Shanghai, China. Frontiers in Microbiology, 11, Article 578020. https://doi.org/10.3389/fmicb.2020.578020
Yang, Y., Stewart, P. E., Shi, X., & Li, C. (2008). Development of a transposon mutagenesis system in the oral spirochete Treponema denticola. Applied and Environmental Microbiology, 74(20), 6461-6464. https://doi.org/10.1128/AEM.01424-08
Yanisch-Perron, C., Vieira, J., & Messing, J. (1985). Improved M13 phage cloning vectors and host strains: Nucleotide sequences of the M13mp18 and pUC19 vectors. Gene, 33(1), 103-119. https://doi.org/10.1016/0378-1119(85)90120-9

Auteurs

Christopher D Johnston (CD)

Vaccine and Infection Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.

M Paula Goetting-Minesky (MP)

Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.

Kelly Kennedy (K)

Vaccine and Infection Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.

Valentina Godovikova (V)

Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.

Sara M Zayed (SM)

Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.
Faculty of Dentistry, Alexandria University, Alexandria, Egypt.

Richard J Roberts (RJ)

New England Biolabs, Ipswich, Massachusetts, USA.

J Christopher Fenno (JC)

Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH