Colorectal Cancer Is Borrowing Blueprints from Intestinal Ontogenesis.
Sox9
cancer stem cells
chemical genomics
colorectal cancer
differentiation therapy
oncogenic reprogramming
Journal
Cancers
ISSN: 2072-6694
Titre abrégé: Cancers (Basel)
Pays: Switzerland
ID NLM: 101526829
Informations de publication
Date de publication:
11 Oct 2023
11 Oct 2023
Historique:
received:
29
08
2023
revised:
02
10
2023
accepted:
10
10
2023
medline:
28
10
2023
pubmed:
28
10
2023
entrez:
28
10
2023
Statut:
epublish
Résumé
Colorectal tumors are heterogenous cellular systems harboring small populations of self-renewing and highly tumorigenic cancer stem cells (CSCs). Understanding the mechanisms fundamental to the emergence of CSCs and colorectal tumor initiation is crucial for developing effective therapeutic strategies. Two recent studies have highlighted the importance of developmental gene expression programs as potential therapeutic targets to suppress pro-oncogenic stem cell populations in the colonic epithelium. Specifically, a subset of aberrant stem cells was identified in preneoplastic intestinal lesions sharing significant transcriptional similarities with fetal gut development. In such aberrant stem cells, Sox9 was shown as a cornerstone for altered cell plasticity, the maintenance of premalignant stemness, and subsequent colorectal tumor initiation. Independently, chemical genomics was used to identify FDA-approved drugs capable of suppressing neoplastic self-renewal based on the ontogenetic root of a target tumor and transcriptional programs embedded in pluripotency. Here, we discuss the joint conclusions from these two approaches, underscoring the importance of developmental networks in CSCs as a novel paradigm for identifying therapeutics targeting colorectal cancer stemness.
Identifiants
pubmed: 37894295
pii: cancers15204928
doi: 10.3390/cancers15204928
pmc: PMC10604965
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : CIHR
ID : PJT-173541
Pays : Canada
Références
Nat Commun. 2019 Mar 29;10(1):1436
pubmed: 30926792
Nature. 2017 Mar 29;543(7647):676-680
pubmed: 28358093
Cell Stem Cell. 2020 Apr 2;26(4):569-578.e7
pubmed: 32169167
Blood Cancer J. 2020 Nov 23;10(11):122
pubmed: 33230098
Genes Dev. 2012 Oct 15;26(20):2271-85
pubmed: 23070813
iScience. 2021 Nov 14;24(12):103442
pubmed: 34877499
Nat Genet. 2008 May;40(5):499-507
pubmed: 18443585
Nature. 2007 Jan 4;445(7123):106-10
pubmed: 17122772
Cell Stem Cell. 2014 Mar 6;14(3):275-91
pubmed: 24607403
Ann Oncol. 2000;11 Suppl 3:207-18
pubmed: 11079143
Nat Biotechnol. 2009 Jan;27(1):91-7
pubmed: 19122652
Cancer Discov. 2021 Jun;11(6):1440-1453
pubmed: 33593877
N Engl J Med. 2013 Oct 10;369(15):1472-3
pubmed: 24106951
Cancer Res. 2016 Apr 15;76(8):2376-83
pubmed: 26941288
J Pathol. 2020 Jul;251(3):336-347
pubmed: 32432338
Oncogene. 2021 Feb;40(6):1191-1202
pubmed: 33323965
Oncogenesis. 2021 Nov 13;10(11):76
pubmed: 34775469
Gastroenterology. 2021 May;160(6):1947-1960
pubmed: 33617889
Science. 2013 Mar 29;339(6127):1567-70
pubmed: 23539597
Cell Chem Biol. 2023 Jul 20;30(7):780-794.e8
pubmed: 37379846
Cell. 2012 Jun 8;149(6):1284-97
pubmed: 22632761
N Engl J Med. 2013 May 30;368(22):2059-74
pubmed: 23634996
Trends Cancer. 2017 May;3(5):372-386
pubmed: 28718414
Sci Adv. 2023 Mar 29;9(13):eadf0927
pubmed: 36989360
Nat Med. 2014 Jan;20(1):29-36
pubmed: 24292392
Cell Chem Biol. 2017 Jul 20;24(7):833-844.e9
pubmed: 28648376
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):9020-9029
pubmed: 30996127
Nature. 2014 Feb 20;506(7488):328-33
pubmed: 24522528
Cell Death Differ. 2021 Jan;28(1):95-107
pubmed: 33208888
Cell. 2010 Oct 15;143(2):313-24
pubmed: 20946988
Gastroenterology. 2022 Jan;162(1):209-222
pubmed: 34571027
Nat Rev Gastroenterol Hepatol. 2020 Feb;17(2):111-130
pubmed: 31900466
Trends Cancer. 2017 Feb;3(2):126-136
pubmed: 28718443
Cell. 2018 Apr 5;173(2):338-354.e15
pubmed: 29625051
Oncogene. 2001 Dec 6;20(56):8085-91
pubmed: 11781821
Cancer Cell. 2012 Dec 11;22(6):737-50
pubmed: 23201164