Distance-Metric Learning for Personalized Survival Analysis.

kernel regression machine learning metric learning personalized medicine survival analysis

Journal

Entropy (Basel, Switzerland)
ISSN: 1099-4300
Titre abrégé: Entropy (Basel)
Pays: Switzerland
ID NLM: 101243874

Informations de publication

Date de publication:
30 Sep 2023
Historique:
received: 13 08 2023
revised: 21 09 2023
accepted: 26 09 2023
medline: 28 10 2023
pubmed: 28 10 2023
entrez: 28 10 2023
Statut: epublish

Résumé

Personalized time-to-event or survival prediction with right-censored outcomes is a pervasive challenge in healthcare research. Although various supervised machine learning methods, such as random survival forests or neural networks, have been adapted to handle such outcomes effectively, they do not provide explanations for their predictions, lacking interpretability. In this paper, an alternative method for survival prediction by weighted nearest neighbors is proposed. Fitting this model to data entails optimizing the weights by learning a metric. An individual prediction of this method can be explained by providing the user with the most influential data points for this prediction, i.e., the closest data points and their weights. The strengths and weaknesses in terms of predictive performance are highlighted on simulated data and an application of the method on two different real-world datasets of breast cancer patients shows its competitiveness with established methods.

Identifiants

pubmed: 37895525
pii: e25101404
doi: 10.3390/e25101404
pmc: PMC10606222
pii:
doi:

Types de publication

Journal Article

Langues

eng

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : 2535

Références

Stat Med. 2009 Aug 30;28(19):2473-89
pubmed: 19472308
Biometrics. 1992 Jun;48(2):411-25
pubmed: 1637970
Ann Epidemiol. 2023 Oct;86:34-48.e28
pubmed: 37343734
Cancer Res. 2000 Feb 1;60(3):636-43
pubmed: 10676647
Neural Netw. 2018 Sep;105:447-462
pubmed: 30029066
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):7128-7148
pubmed: 34310285
Brief Bioinform. 2018 Nov 27;19(6):1236-1246
pubmed: 28481991
Stat Med. 1999 Sep 15-30;18(17-18):2529-45
pubmed: 10474158
Nature. 2012 Apr 18;486(7403):346-52
pubmed: 22522925
Stat Med. 2020 Sep 20;39(21):2714-2742
pubmed: 32548928
Lifetime Data Anal. 2021 Oct;27(4):710-736
pubmed: 34618267
Stat Med. 2005 Dec 30;24(24):3927-44
pubmed: 16320281
Stat Med. 2013 May 30;32(12):2062-9
pubmed: 23653217
Stat Med. 2021 Sep 20;40(21):4691-4713
pubmed: 34114252
BMC Med Res Methodol. 2018 Feb 26;18(1):24
pubmed: 29482517
J Clin Oncol. 1994 Oct;12(10):2086-93
pubmed: 7931478

Auteurs

Wolfgang Galetzka (W)

Institute of Medical Informatics, Biometrics and Epidemiology, University Hospital Essen, 45130 Essen, Germany.

Bernd Kowall (B)

Institute of Medical Informatics, Biometrics and Epidemiology, University Hospital Essen, 45130 Essen, Germany.

Cynthia Jusi (C)

Nisso Chemical Europe GmbH, 40212 Düsseldorf, Germany.

Eva-Maria Huessler (EM)

Institute of Medical Informatics, Biometrics and Epidemiology, University Hospital Essen, 45130 Essen, Germany.

Andreas Stang (A)

Institute of Medical Informatics, Biometrics and Epidemiology, University Hospital Essen, 45130 Essen, Germany.

Classifications MeSH