Spatial distribution, conversion, and ecological risk assessment of hexabromocyclododecanes in the sediments of black-odorous urban rivers nationwide in China.

Black-odorous urban river Hexabromocyclododecanes Pollution characteristics Surface sediment

Journal

The Science of the total environment
ISSN: 1879-1026
Titre abrégé: Sci Total Environ
Pays: Netherlands
ID NLM: 0330500

Informations de publication

Date de publication:
10 Jan 2024
Historique:
received: 12 08 2023
revised: 11 10 2023
accepted: 21 10 2023
pubmed: 29 10 2023
medline: 29 10 2023
entrez: 28 10 2023
Statut: ppublish

Résumé

Hexabromocyclododecanes (HBCDs) have become a global pollution problem, particularly in China-a major producer and user of HBCDs. However, little is known about the HBCD pollution status in urban rivers nationwide in China. In this study, we comprehensively investigated the pollution characteristics of HBCDs in 173 sediment samples from black-odorous urban rivers across China. Total HBCD concentrations ranged from not-detected to 848 ng/g dw, showing significant differences among the various sampling cities, but generally increasing from west to east China. This distribution pattern of HBCDs was strongly associated with the local industrial output, gross domestic product, and daily wastewater treatment capacity. α-HBCD was the predominant diastereoisomer in most sediments, with an average proportion of 63.8 ± 18.8 %, followed by γ-HBCD (23.8 ± 19.5 %) and β-HBCD (12.4 ± 6.49 %), showing a significant increase of the α-HBCD proportions relative to those in HBCD commercial mixtures and an opposite trend for that of γ-HBCD. These results suggested that HBCDs might undergo isomerization from γ- to α-HBCD and biotic/abiotic degradation with preference for γ-HBCD. Of these conversions, the microbial degradation of HBCDs was further verified by the preferential transformation of (-)-α-, (+)-β-, and (-)-γ-HBCDs and the detection of HBCD-degrading bacteria, including Dehalococcoides, Bacillus, Sphingobium, and Pseudomonas. A risk assessment indicated that HBCDs pose low to moderate risks to aquatic organisms in most black-odorous urban river sediments.

Identifiants

pubmed: 37898190
pii: S0048-9697(23)06684-6
doi: 10.1016/j.scitotenv.2023.168057
pii:
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

168057

Informations de copyright

Copyright © 2023 Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Chenchen Huang (C)

China University of Mining & Technology, School of Environmental Science & Spatial Informatics, Xuzhou 221116, Jiangsu, People's Republic of China; State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.

Kelan Guan (K)

State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.

Xuemeng Qi (X)

State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.

Yin-E Liu (YE)

China University of Mining & Technology, School of Environmental Science & Spatial Informatics, Xuzhou 221116, Jiangsu, People's Republic of China; State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.

Qihong Lu (Q)

School of Environmental Science and Engineering, Sun Yat-sen University, People's Republic of China.

Yanhong Zeng (Y)

State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China. Electronic address: zengyh@gig.ac.cn.

Shanquan Wang (S)

School of Environmental Science and Engineering, Sun Yat-sen University, People's Republic of China.

Xiaojun Luo (X)

State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.

Bixian Mai (B)

State Key Laboratory of Organic Geochemistry, Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China; Guangdong-Hong Kong-MaCao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, People's Republic of China.

Classifications MeSH