Clinical findings in individuals with duplication of genes associated with X-linked intellectual disability.
X chromosome
X-linked intellectual disability
copy number variants
gene duplication
syndromes
Journal
Clinical genetics
ISSN: 1399-0004
Titre abrégé: Clin Genet
Pays: Denmark
ID NLM: 0253664
Informations de publication
Date de publication:
29 Oct 2023
29 Oct 2023
Historique:
revised:
25
09
2023
received:
09
08
2023
accepted:
13
10
2023
medline:
30
10
2023
pubmed:
30
10
2023
entrez:
30
10
2023
Statut:
aheadofprint
Résumé
Duplication of all genes associated with X-linked intellectual disability (XLID) have been reported but the majority of the duplications include more than one XLID gene. It is exceptional for whole XLID gene duplications to cause the same phenotype as sequence variants or deletions of the same gene. Duplication of PLP1, the gene associated with Pelizaeus-Merzbacher syndrome, is the most notable duplication of this type. More commonly, duplication of XLID genes results in very different phenotypes than sequence alterations or deletions. Duplication of MECP2 is widely recognized as a duplication of this type, but a number of others exist. The phenotypes associated with gene duplications are often milder than those caused by deletions and sequence variants. Among some duplications that are clinically significant, marked skewing of X-inactivation in female carriers has been observed. This report describes the phenotypic consequences of duplication of 22 individual XLID genes, of which 10 are described for the first time.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Greenwood Genetic Center Foundation
Organisme : South Carolina Department of Disabilities and Special Needs
Informations de copyright
© 2023 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Références
Lupski JR. Structural variation mutagenesis of the human genome: impact on disease and evolution. Environ Mol Mutagen. 2015;56:419-436.
Schwartz CE, Louie RJ, Toutain A, Skinner C, Friez MJ, Stevenson RE. X-linked intellectual disability update 2022. Am J Med Genet A. 2023;191:144-159.
Froyen G, Van Esch H, Bauters M, et al. Detection of genomic copy number changes in patients with idiopathic mental retardation by high-resolution X-array-CGH: important role for increased gene dosage of XLMR genes. Hum Mutat. 2007;28:1034-1042.
Gijsbers ACJ, Hollander NSD, Enden ATJMG, et al. X-chromosome duplicaitons in males with mental retardation: pathogenic or benign variants? Clin Gent. 2010;79:71-78.
Evers C, Mitter D, Strobl-Wildemann G, et al. Duplication Xp11.22-p14 in females: does X-inactivation help in assessing their significance? Am J Med Genet A. 2015;167A:553-562.
Liu P, Erez A, Nagamani SCS, et al. Copy number gain at Xp22.31 includes complex duplication rearrangements and recurrent triplications. Hum Mol Genet. 2011;20:1975-1988.
van Asbeck E, Ramalingam A, Dvorak C, Chen T-J, Morava E. Duplication at Xq28 involving IKBKG is associated with progressive macrocephaly, recurrent infections, ectodermal dysplasia, benign tumors, and neuropathy. Clin Dysmorphol. 2014;23:77-82.
Popovici C, Busa T, Boute O, et al. Whole ARX gene duplication is compatible with normal intellectual development. Am J Med Genet A. 2014;164A:2324-2327.
Maurin M-L, Arfeuille C, Sonigo P, et al. Large duplications can be benign copy number variants: a case of a 3.6-mb Xq21.33 duplication. Cytogenet Genome res. 2017;151:115-118.
Basilicata M, Bruel A-L, Semplicio G, et al. De novo mutations in MSL3 cause an X-linked syndrome marked by impaired histone H4 lysine 16 acetylation. Nat Genet. 2018;50:1442-1451.
Nemos C, Lambert L, Giuliano F, et al. Mutations spectrum of CDKL5 in early-onset encephalopathies: a study of a large collection of French patients and review of the literature. Clin Genet. 2009;76:357-371.
Szafranski P, Golla S, Jin W, et al. Neurodevelopmental and neurobehavioral characteristics in males and females with CDKL5 duplications. Eur J Hum Genet. 2015;23:915-921.
Sismani C, Anastasiadou V, Kousoulidou L, et al. 9 Mb familial duplication in chromosome band Xp22.2-22.13 associated with mental retardation, hypotonia and developmental delay, scoliosis, cardiovascular problems and mild dysmorphic facial features. Eur J Med Genet. 2011;54:e510-e515.
Young ID. The Coffin-Lowry syndrome. J Med Genet. 1988;25:344-348.
Uliana V, Bonatti F, Zanatta V, Mozzoni P, Martorana D, Percesepe A. Spectrum of X-linked intellectual disabilities and psychiatric symptoms in a family harboring a Xp22.12 microduplication encompassing the RPS6KA3 gene. J Genet. 2019;98:10.
Bartley JA, Patil S, Davenport S, Goldstein D, Pickens J. Duchenne muscular dystrophy glycerol kinase deficiency, and adrenal insufficiency associated with Xp21 interstitial deletion. J Pediatr. 1986;108:189-192.
Grier RE, Howell RR, Wu D, McCabe ERB. Isolated glycerol kinase deficiency: nutritional and molecular genetics studies. Am J Hum Genet. 1989;45:A6.
Ramser J, Abidi FE, Burckle CA, et al. A unique exonic splice enhancer mutation in a family with X-linked mental retardation and epilepsy points to a novel role of the renin receptor. Hum Mol Genet. 2005;14:1019-1027.
Kleefstra T, Yntema HG, Oudakker AR, et al. Zinc finger 81 (ZNF81) mutations associated with X-linked mental retardation. J Med Genet. 2004;41:394-399.
Piton A, Redin C, Mandel JL. XLID-causing mutations and associated genes challenged in light of data from large-scale human exome sequencing. Am J Hum Genet. 2013;93:368-383.
Alesi V, Bertoli M, Barrano G, et al. 335.4 kb microduplication in chromosome band Xp11.2p11.3 associated with developmental delay, growth retardation, autistic disorder and dysmorphic features. Gene. 2012;505:384-387.
Hagens O, Dubos A, Abidi F, et al. Disruptions of the novel KIAA1202 gene are associated with X-linked mental retardation. Hum Gene. 2006;118:578-590.
Friez MJ, Brooks SS, Stevenson RE, et al. HUWE1 mutations in Juberg-Marsidi and Brooks syndromes: the results of an X-chromosome exome sequencing study. BMJ Open. 2016;6:e009537.
Froyen G, Belet S, Martinez F, et al. Copy-number gains of HUWE1 due to replication- and recombination-based rearrangements. Am J Hum Genet. 2012;91:252-264.
Orivoli S, Pavlidis E, Cantalupo G, et al. Xp11.22 microduplications including HUWE1: case report and literature review. Neuropediatrics. 2016;47:51-56.
Wilson M, Mulley J, Gedeon A, Robinson H, Turner G. New X-linked syndrome of mental retardation, gynecomastia, and obesity is linked to DXS255. Am J Med Genet. 1991;40:406-413.
Hu H, Haas SA, Chelly J, et al. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes. Mol Psychiatry. 2016;21:133-148.
Bergmann C, Zerres K, Senderek J, et al. Oligophrenin 1 (OPHN1) gene mutation causes syndromic X-linked mental retardation with epilepsy, rostral ventricular enlargement and cerebellar hypoplasia. Brain. 2003;126:1537-1544.
Bedeschi MF, Novelli A, Bernardini L, et al. Association of syndromic mental retardation with an Xq12q13.1 duplication encompassing the oligophrenin 1 gene. Am J Med Genet A. 2008;146A:1718-1724.
Van Maldergem L, Hou Q, Kalscheuer VM, et al. Loss of function of KIAA2022 causes mild to severe intellectual disability with an autism spectrum disorder and impairs neurite outgrowth. Hum Mol Genet. 2013;22:3306-3314.
de Lange IM, Helbig KL, Weckhuysen S, et al. De novo mutations of KIAA2022 in females cause intellectual disability and intractable epilepsy. J Med Genet. 2016;53:850-858.
Charzewska A, Rzonca S, Janeczko M, et al. A duplication of the whole KIAA2022 gene validates the gene role in the pathogenesis of intellectual disability and autism. Clin Genet. 2015;88:297-299.
Gibbons RJ, Brueton L, Buckle VJ, et al. Clinical and hematologic aspects of the X-linked alpha-thalassemia/mental retardation syndrome (ATR-X). Am J Med Genet. 1995a;55:288-299.
Chen C-P, Yip H-K, Wang L-K, et al. Molecular genetic characterization of a prenatally detected 1.484-Mb Xq13.3-q21.1 duplication encompassing ATRX and a literature review of syndromic intellectual disability and congenital abnormalities in males with a duplication at Xq13.3-q21.1. Taiwan J Obstet Gynecol. 2017;56:385-389.
Lugtenberg D, de Brouwer AP, Oudakker AR, et al. Xq13.2q21.1 duplication encompassing the ATRX gene in a man with mental retardation, minor facial and genital anomalies, short stature and broad thorax. Am J Med Genet A. 2009;149A:760-766.
Martínez F, Roselló M, Mayo S, Monfort S, Oltra S, Orellana C. Duplication at Xq13.3-q21.1 with syndromic intellectual disability, a probable role for ATRX gene. Am J Med Genet A. 2014;164A:918-923.
Wang J, Foroutan A, Richardson E, et al. Clinical findings and a DNA methylation signature in kindreds with alterations in ZNF711. Eur J Hum Genet. 2022;30:420-427.
Mimault C, Giraud G, Courois V, et al. Proteolipoprotein gene analysis in 82 patients with sporadic Pelizaeus-Merzbacher disease: duplications, the major cause of the disease, originate more frequently in male germ cells, but point mutations do not. The clinical European network on brain dysmyelinating disease. Am J Hum Genet. 1999;65:360-369.
Jazayeri R, Hu H, Fattahi Z, et al. Exome sequencing and linkage analysis identified novel candidate genes in recessive intellectual disability associated with ataxia. Arch Iran Med. 2015;18:670-682.
Vandewalle J, Bauters M, Van Esch H, et al. The mitochondrial solute carrier SLC25A5 at Xq24 is a novel candidate gene for non-syndromic intellectual disability. Hum Genet. 2013;132:1177-1185.
Butler KM, Fee T, DuPont BR, Dean JH, Stevenson RE, Lyons MJ. A SOX3 duplication and lumbosacral spina bifida in three generations. Am J Med Genet A. 2022;188:1572-1577.
Stevenson RE, Schwartz CE, Rogers RC. Fragile X Syndrome. Atlas of X-Linked Intellectual Disability Syndrome. Oxford University Press; 2012:89-90.
Nagamani SCS, Erez A, Probst FJ, et al. Small genomic rearrangements involving FMR1 support the importance of its gene dosage for normal neurocognitive function. Neurogenetics. 2012;13:333-339.
Rio M, Malan V, Boissel S, et al. Familial interstitial Xq27.3q28 duplication encompassing the FMR1 gene but not the MECP2 gene causes a new syndromic mental retardation condition. Eur J Hum Genet. 2010;18:285-290.
Hickey SE, Walters-Sen L, Mosher TM, et al. Duplication of the Xq27.3-q28 region, including the FMR1 gene, in an X-linked hypogonadism, gynecomastia, intellectual disability, short stature, and obesity syndrome. Am J Med Genet A. 2013;161A:2294-2299.
Wraith JE, Scarpa M, Beck M, et al. Mucopolysaccharidosis type II (Hunter syndrome): a clinical review and recommendations for treatment in the era of enzyme replacement therapy. Eur J Pediatr. 2008;167:267-277.
McLarren KW, Severson TM, du Souich C, et al. Hypomorphic temperature-sensitive alleles of NSDHL cause CK syndrome. Am J Hum Genet. 2010;87:905-914.
Hu CC, Sun YJ, Liu CX, et al. NSDHL-containing duplication at Xq28 in a male patient with autism spectrum disorder: a case report. BMC Med Genet. 2018;19:192.
Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is cause by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185-188.
Lugtenburg D, Kleefstra T, Oudakker AS, et al. Structural variation in Xq28: MECP2 duplications in 1% of patients with unexplained XLMR and in 2% of male patients with severe encephalopathy. Eur J Hum Genet. 2009;17:444-453.