Mechanistic insights into iron-sulfur clusters and flavin oxidation of a novel xanthine oxidoreductase from Sulfobacillus acidophilus TPY.
electron transfer
flavin
flavoenzyme
iron-sulfur clusters
xanthine oxidoreductase
Journal
The FEBS journal
ISSN: 1742-4658
Titre abrégé: FEBS J
Pays: England
ID NLM: 101229646
Informations de publication
Date de publication:
30 Oct 2023
30 Oct 2023
Historique:
revised:
04
10
2023
received:
24
06
2023
accepted:
24
10
2023
pubmed:
30
10
2023
medline:
30
10
2023
entrez:
30
10
2023
Statut:
aheadofprint
Résumé
Xanthine oxidoreductase (XOR) catalyzes the oxidation of purines (hypoxanthine and xanthine) to uric acid. XOR is widely used in various therapeutic and biotechnological applications. In this study, we characterized the biophysical and mechanistic properties of a novel bacterial XOR from Sulfobacillus acidophilus TPY (SaXOR). Our results showed that SaXOR is a heterotrimer consisting of three subunits, namely XoA, XoB, and XoC, which denote the molybdenum cofactor (Moco), 2Fe-2S, and FAD-binding domains, respectively. XoC was found to be stable when co-expressed with XoB, forming an XoBC complex. Furthermore, we prepared a fusion of XoB and XoC via a flexible linker (fusXoBC) and evaluated its function in comparison to that of XoBC. Spectroscopic analysis revealed that XoB harbors two 2Fe-2S clusters, whereas XoC bears a single-bound FAD cofactor. Electron transfer from reduced forms of XoC, XoBC, and fusXoBC to molecular oxygen (O
Banques de données
RefSeq
['AEJ41755.1', 'AEJ41756.1', 'AEJ41754.1', 'CP002901.1']
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : The Grant from Faculty of Science, Kasetsart University
Organisme : The Grant from Office of the Permanent Secretary, Ministry of Higher Education, Science, Research and Innovation (OPS MHESI), Thailand Science Research and Innovation (TSRI) and Kasetsart University
ID : RGNS 64-030
Organisme : The National Research Council of Thailand (NRCT)
ID : NRCT5-RSA63012-01
Informations de copyright
© 2023 Federation of European Biochemical Societies.
Références
Hille R, Hall J & Basu P (2014) The mononuclear molybdenum enzymes. Chem Rev 114, 3963-4038.
Nishino T & Okamoto K (2015) Mechanistic insights into xanthine oxidoreductase from development studies of candidate drugs to treat hyperuricemia and gout. J Biol Inorg Chem 20, 195-207.
Wang CH, Zhang C & Xing XH (2016) Xanthine dehydrogenase: an old enzyme with new knowledge and prospects. Bioengineered 7, 395-405.
Mustafa F & Andreescu S (2020) Paper-based enzyme biosensor for one-step detection of hypoxanthine in fresh and degraded fish. ACS Sens 5, 4092-4100.
Enroth C, Eger BT, Okamoto K, Nishino T, Nishino T & Pai EF (2000) Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc Natl Acad Sci USA 97, 10723-10728.
Okamoto K, Matsumoto K, Hille R, Eger BT, Pai EF & Nishino T (2004) The crystal structure of xanthine oxidoreductase during catalysis: implications for reaction mechanism and enzyme inhibition. Proc Natl Acad Sci USA 101, 7931-7936.
Asai R, Nishino T, Matsumura T, Okamoto K, Igarashi K, Pai EF & Nishino T (2007) Two mutations convert mammalian xanthine oxidoreductase to highly superoxide-productive xanthine oxidase. J Biochem 141, 525-534.
Nishino T, Okamoto K, Kawaguchi Y, Hori H, Matsumura T, Eger BT, Pai EF & Nishino T (2005) Mechanism of the conversion of xanthine dehydrogenase to xanthine oxidase: identification of the two cysteine disulfide bonds and crystal structure of a non-convertible rat liver xanthine dehydrogenase mutant. J Biol Chem 280, 24888-24894.
Yamaguchi Y, Matsumura T, Ichida K, Okamoto K & Nishino T (2007) Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. J Biochem 141, 513-524.
Dietzel U, Kuper J, Doebbler JA, Schulte A, Truglio JJ, Leimkuhler S & Kisker C (2009) Mechanism of substrate and inhibitor binding of Rhodobacter capsulatus xanthine dehydrogenase. J Biol Chem 284, 8768-8776.
Hall J, Reschke S, Cao H, Leimkuhler S & Hille R (2014) The reductive half-reaction of xanthine dehydrogenase from Rhodobacter capsulatus: the role of Glu232 in catalysis. J Biol Chem 289, 32121-32130.
Leimkuhler S, Hodson R, George GN & Rajagopalan KV (2003) Recombinant Rhodobacter capsulatus xanthine dehydrogenase, a useful model system for the characterization of protein variants leading to xanthinuria I in humans. J Biol Chem 278, 20802-20811.
Leimkuhler S, Stockert AL, Igarashi K, Nishino T & Hille R (2004) The role of active site glutamate residues in catalysis of Rhodobacter capsulatus xanthine dehydrogenase. J Biol Chem 279, 40437-40444.
Pauff JM, Hemann CF, Junemann N, Leimkuhler S & Hille R (2007) The role of arginine 310 in catalysis and substrate specificity in xanthine dehydrogenase from Rhodobacter capsulatus. J Biol Chem 282, 12785-12790.
Nishino T, Okamoto K, Eger BT, Pai EF & Nishino T (2008) Mammalian xanthine oxidoreductase - mechanism of transition from xanthine dehydrogenase to xanthine oxidase. FEBS J 275, 3278-3289.
Saksela M, Lapatto R & Raivio KO (1999) Irreversible conversion of xanthine dehydrogenase into xanthine oxidase by a mitochondrial protease. FEBS Lett 443, 117-120.
Okamoto K, Kusano T & Nishino T (2013) Chemical nature and reaction mechanisms of the molybdenum cofactor of xanthine oxidoreductase. Curr Pharm Des 19, 2606-2614.
Guo W, Zhang H, Zhou W, Wang Y, Zhou H & Chen X (2016) Sulfur metabolism pathways in Sulfobacillus acidophilus TPY, a gram-positive moderate thermoacidophile from a hydrothermal vent. Front Microbiol 7, 1861.
Li B, Chen Y, Liu Q, Hu S & Chen X (2011) Complete genome analysis of Sulfobacillus acidophilus strain TPY, isolated from a hydrothermal vent in the Pacific Ocean. J Bacteriol 193, 5555-5556.
Takahashi Y & Nakamura M (1999) Functional assignment of the ORF2-iscS-iscU-iscA-hscB-hscA-fdx-ORF3 gene cluster involved in the assembly of Fe-S clusters in Escherichia coli. J Biochem 126, 917-926.
Chen X, Zaro JL & Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev 65, 1357-1369.
Godber BL, Schwarz G, Mendel RR, Lowe DJ, Bray RC, Eisenthal R & Harrison R (2005) Molecular characterization of human xanthine oxidoreductase: the enzyme is grossly deficient in molybdenum and substantially deficient in iron-Sulphur centres. Biochem J 388, 501-508.
Harris CM & Massey V (1997) The reaction of reduced xanthine dehydrogenase with molecular oxygen. Reaction kinetics and measurement of superoxide radical. J Biol Chem 272, 8370-8379.
Hille R, Hagen WR & Dunham WR (1985) Spectroscopic studies on the iron-sulfur centers of milk xanthine oxidase. J Biol Chem 260, 10569-10575.
Mangkalee M, Oonanant W, Aonbangkhen C, Pimviriyakul P, Tinikul R, Chaiyen P, Insin N & Sucharitakul J (2023) Reaction mechanism and kinetics of the two-component flavoprotein dimethyl sulfone monooxygenase system: using hydrogen peroxide for monooxygenation and substrate cleavage. FEBS J doi: 10.1111/febs.16916 article in press.
Saito T & Nishino T (1989) Differences in redox and kinetic properties between NAD-dependent and O2-dependent types of rat liver xanthine dehydrogenase. J Biol Chem 264, 10015-10022.
Schopfer LM, Massey V & Nishino T (1988) Rapid reaction studies on the reduction and oxidation of chicken liver xanthine dehydrogenase by the xanthine/urate and NAD/NADH couples. J Biol Chem 263, 13528-13538.
Harris CM & Massey V (1997) The oxidative half-reaction of xanthine dehydrogenase with NAD; reaction kinetics and steady-state mechanism. J Biol Chem 272, 28335-28341.
Harris CM, Sanders SA & Massey V (1999) Role of the flavin midpoint potential and NAD binding in determining NAD versus oxygen reactivity of xanthine oxidoreductase. J Biol Chem 274, 4561-4569.
Hille R (1991) Electron transfer within xanthine oxidase: a solvent kinetic isotope effect study. Biochemistry 30, 8522-8529.
Xiang Q & Edmondson DE (1996) Purification and characterization of a prokaryotic xanthine dehydrogenase from Comamonas acidovorans. Biochemistry 35, 5441-5450.
Parschat K, Canne C, Huttermann J, Kappl R & Fetzner S (2001) Xanthine dehydrogenase from pseudomonas putida 86: specificity, oxidation-reduction potentials of its redox-active centers, and first EPR characterization. Biochim Biophys Acta 1544, 151-165.
Wang CH, Zhao TX, Li M, Zhang C & Xing XH (2016) Characterization of a novel Acinetobacter baumannii xanthine dehydrogenase expressed in Escherichia coli. Biotechnol Lett 38, 337-344.
Leimkuhler S & Klipp W (1999) Role of XDHC in molybdenum cofactor insertion into xanthine dehydrogenase of Rhodobacter capsulatus. J Bacteriol 181, 2745-2751.
Neumann M, Schulte M, Junemann N, Stocklein W & Leimkuhler S (2006) Rhodobacter capsulatus XdhC is involved in molybdenum cofactor binding and insertion into xanthine dehydrogenase. J Biol Chem 281, 15701-15708.
Schumann S, Saggu M, Moller N, Anker SD, Lendzian F, Hildebrandt P & Leimkuhler S (2008) The mechanism of assembly and cofactor insertion into Rhodobacter capsulatus xanthine dehydrogenase. J Biol Chem 283, 16602-16611.
Ivanov NV, Hubalek F, Trani M & Edmondson DE (2003) Factors involved in the assembly of a functional molybdopyranopterin center in recombinant Comamonas acidovorans xanthine dehydrogenase. Eur J Biochem 270, 4744-4754.
Hu J, Su Q, Schlessman JL & Rokita SE (2019) Redox control of iodotyrosine deiodinase. Protein Sci 28, 68-78.
Ishikita H (2007) Influence of the protein environment on the redox potentials of flavodoxins from Clostridium beijerinckii. J Biol Chem 282, 25240-25246.
Zallot R, Oberg N & Gerlt JA (2019) The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169-4182.
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B & Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498-2504.
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L et al. (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46, W296-W303.