Charge and lipophilicity are required for effective block of the hair-cell mechano-electrical transducer channel by FM1-43 and its derivatives.
FM1-43
hair cell
hearing
mechano-electrical transducer channel
ototoxicity
zebrafish
Journal
Frontiers in cell and developmental biology
ISSN: 2296-634X
Titre abrégé: Front Cell Dev Biol
Pays: Switzerland
ID NLM: 101630250
Informations de publication
Date de publication:
2023
2023
Historique:
received:
25
06
2023
accepted:
19
09
2023
medline:
30
10
2023
pubmed:
30
10
2023
entrez:
30
10
2023
Statut:
epublish
Résumé
The styryl dye FM1-43 is widely used to study endocytosis but behaves as a permeant blocker of the mechano-electrical transducer (MET) channel in sensory hair cells, loading rapidly and specifically into the cytoplasm of hair cells in a MET channel-dependent manner. Patch clamp recordings of mouse outer hair cells (OHCs) were used to determine how a series of structural modifications of FM1-43 affect MET channel block. Fluorescence microscopy was used to assess how the modifications influence hair-cell loading in mouse cochlear cultures and zebrafish neuromasts. Cochlear cultures were also used to evaluate otoprotective potential of the modified FM1-43 derivatives. Structure-activity relationships reveal that the lipophilic tail and the cationic head group of FM1-43 are both required for MET channel block in mouse cochlear OHCs; neither moiety alone is sufficient. The extent of MET channel block is augmented by increasing the lipophilicity/bulkiness of the tail, by reducing the number of positive charges in the head group from two to one, or by increasing the distance between the two charged head groups. Loading assays with zebrafish neuromasts and mouse cochlear cultures are broadly in accordance with these observations but reveal a loss of hair-cell specific labelling with increasing lipophilicity. Although FM1-43 and many of its derivatives are generally cytotoxic when tested on cochlear cultures in the presence of an equimolar concentration of the ototoxic antibiotic gentamicin (5 µM), at a 10-fold lower concentration (0.5 µM), two of the derivatives protect OHCs from cell death caused by 48 h-exposure to 5 µM gentamicin.
Identifiants
pubmed: 37900280
doi: 10.3389/fcell.2023.1247324
pii: 1247324
pmc: PMC10601989
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1247324Informations de copyright
Copyright © 2023 Derudas, O’Reilly, Kirkwood, Kenyon, Grimsey, Kitcher, Workman, Bull, Ward, Kros and Richardson.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer AB declared a shared affiliation with the author SK to the handling editor at the time of review.
Références
Proc Biol Sci. 1992 Aug 22;249(1325):185-93
pubmed: 1280836
Front Cell Neurosci. 2017 Sep 05;11:262
pubmed: 28928635
Neuron. 2018 Aug 22;99(4):736-753.e6
pubmed: 30138589
J Histochem Cytochem. 1996 Jul;44(7):733-41
pubmed: 8675994
EMBO Mol Med. 2017 Dec;9(12):1711-1731
pubmed: 29084757
PLoS One. 2011 Apr 21;6(4):e19183
pubmed: 21532990
Curr Opin Neurobiol. 1996 Jun;6(3):365-71
pubmed: 8794083
Nature. 2022 Oct;610(7933):796-803
pubmed: 36224384
Pflugers Arch. 1999 Dec;439(1-2):113-22
pubmed: 10651007
Curr Opin Otolaryngol Head Neck Surg. 2007 Oct;15(5):352-7
pubmed: 17823553
JCI Insight. 2021 Apr 8;6(7):
pubmed: 33735112
Development. 1999 Sep;126(17):3757-67
pubmed: 10433906
Curr Top Membr. 2007;59:375-98
pubmed: 25168143
Physiol Rev. 2014 Jul;94(3):951-86
pubmed: 24987009
Neuron. 2020 Jul 8;107(1):126-143.e8
pubmed: 32343945
J Med Chem. 2019 Jun 13;62(11):5312-5329
pubmed: 31083995
J Physiol. 2005 Sep 1;567(Pt 2):505-21
pubmed: 15994187
J Clin Invest. 2011 Dec;121(12):4796-809
pubmed: 22105175
Hear Res. 1987 Nov;31(1):9-24
pubmed: 3429352
JCI Insight. 2017 Dec 21;2(24):
pubmed: 29263311
J Physiol. 1994 Jan 1;474(1):75-86
pubmed: 7516972
J Med Chem. 2018 Jan 11;61(1):84-97
pubmed: 28992413
Proc Natl Acad Sci U S A. 2019 Oct 8;116(41):20743-20749
pubmed: 31548403
J Infect Dis. 1981 Mar;143(3):476-86
pubmed: 7229440
J Neurosci. 2003 May 15;23(10):4054-65
pubmed: 12764092
J Neurobiol. 1999 Nov 15;41(3):424-34
pubmed: 10526320
Elife. 2017 Mar 28;6:
pubmed: 28350294
J Neurosci. 2001 Sep 15;21(18):7013-25
pubmed: 11549711
Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):21960-5
pubmed: 20007370
PLoS One. 2011;6(7):e22347
pubmed: 21818312
J Neurosci. 2012 Jul 11;32(28):9485-98
pubmed: 22787034
J Mol Biol. 2021 Aug 6;433(16):166941
pubmed: 33741412
Cold Spring Harb Perspect Med. 2019 May 1;9(5):
pubmed: 30082452
Neuropharmacology. 1997 Sep;36(9):1269-75
pubmed: 9364481
Nat Commun. 2017 Jun 29;8(1):43
pubmed: 28663585
J Neurosci. 1992 Feb;12(2):363-75
pubmed: 1371312
J Neurosci. 2021 May 19;41(20):4378-4391
pubmed: 33824189
Sci Adv. 2022 Aug 5;8(31):eabm5550
pubmed: 35921424
J Physiol. 2004 Aug 1;558(Pt 3):769-92
pubmed: 15181168
Curr Biol. 2020 Feb 3;30(3):442-454.e7
pubmed: 31902726
Elife. 2018 Jul 31;7:
pubmed: 30063209
J Assoc Res Otolaryngol. 2000 Sep;1(2):172-82
pubmed: 11545144
JCI Insight. 2019 Aug 8;4(15):
pubmed: 31391343
J Assoc Res Otolaryngol. 2009 Jun;10(2):205-19
pubmed: 19255807
Science. 1992 Jan 10;255(5041):200-3
pubmed: 1553547
J Gen Physiol. 2021 Oct 4;153(10):
pubmed: 34411238
Drug Discov Today. 2010 Apr;15(7-8):265-71
pubmed: 20096805
Int J Otolaryngol. 2011;2011:937861
pubmed: 22121370
J Physiol. 1999 Nov 1;520 Pt 3:653-60
pubmed: 10545133
Front Mol Neurosci. 2017 Dec 04;10:401
pubmed: 29255404