Altered functional activity of the precuneus and superior temporal gyrus in patients with residual dizziness caused by benign paroxysmal positional vertigo.
amplitude of low frequency fluctuation
benign paroxysmal positional vertigo
functional connectivity
residual dizziness
resting state function magnetic resonance imaging
Journal
Frontiers in neuroscience
ISSN: 1662-4548
Titre abrégé: Front Neurosci
Pays: Switzerland
ID NLM: 101478481
Informations de publication
Date de publication:
2023
2023
Historique:
received:
12
05
2023
accepted:
29
09
2023
medline:
30
10
2023
pubmed:
30
10
2023
entrez:
30
10
2023
Statut:
epublish
Résumé
Benign paroxysmal positional vertigo (BPPV) is a common clinical vertigo disease, and the most effective treatment for this disease is canal repositioning procedures (CRP). Most patients return to normal after a single treatment. However, some patients still experience residual dizziness (RD) after treatment, and this disease's pathogenesis is currently unclear. The purpose of this study is to explore whether there are abnormal brain functional activities in patients with RD by using resting-state functional magnetic resonance imaging (rs-fMRI) and to provide imaging evidence for the study of the pathogenesis of RD. The BPPV patients in the Second Affiliated Hospital of Xuzhou Medical University had been included from December 2021 to November 2022. All patients had been received the collection of demographic and clinical characteristics (age, gender, involved semicircular canal, affected side, CRP times, BPPV course, duration of RD symptoms, and whether they had hypertension, diabetes, coronary heart disease.), scale assessment, including Dizziness Handicap Inventory (DHI), Hamilton Anxiety Inventory (HAMA), Hamilton Depression Inventory (HAMD), rs-fMRI data collection, CRP treatment, and then a one-month follow-up. According to the follow-up results, 18 patients with RD were included. At the same time, we selected 19 healthy individuals from our hospital's physical examination center who matched their age, gender as health controls (HC). First, the amplitude of low-frequency fluctuations (ALFF) analysis method was used to compare the local functional activities of the two groups of subjects. Then, the brain regions with different ALFF results were extracted as seed points. Functional connectivity (FC) analysis method based on seed points was used to explore the whole brain FC of patients with RD. Finally, a correlation analysis between clinical features and rs-fMRI data was performed. Compared to the HC, patients with RD showed lower ALFF value in the right precuneus and higher ALFF value in the right superior temporal gyrus (STG). When using the right STG as a seed point, it was found that the FC between the right STG, the right supramarginal gyrus (SMG), and the left precuneus was decreased in RD patients. However, no significant abnormalities in the FC were observed when using the right precuneus as a seed point. In patients with RD, the local functional activity of the right precuneus is weakened, and the local functional activity of the right STG is enhanced. Furthermore, the FC between the right STG, the right SMG, and the left precuneus is weakened. These changes may explain the symptoms of dizziness, floating sensation, walking instability, neck tightness, and other symptoms in patients with RD to a certain extent.
Identifiants
pubmed: 37901419
doi: 10.3389/fnins.2023.1221579
pmc: PMC10600499
doi:
Types de publication
Journal Article
Langues
eng
Pagination
1221579Informations de copyright
Copyright © 2023 Lin, Liu, Liu, Chen, Wei, Liu, Wang, Liu, Xiao and Rong.
Déclaration de conflit d'intérêts
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Références
Front Neurol. 2020 Jan 28;11:11
pubmed: 32047473
Neuroimage. 2012 Mar;60(1):162-9
pubmed: 22209784
Magn Reson Med. 2011 Sep;66(3):644-57
pubmed: 21394769
Brain Sci. 2022 Sep 09;12(9):
pubmed: 36138956
Cerebellum. 2021 Oct;20(5):804-809
pubmed: 33547587
Rev Med Brux. 2017;38(4):247-253
pubmed: 28981226
Rev Neurol. 2003 Nov 16-30;37(10):983-4
pubmed: 14634931
Otolaryngol Head Neck Surg. 2016 Apr;154(4):693-701
pubmed: 26861236
Nature. 2008 Jun 12;453(7197):869-78
pubmed: 18548064
Audiol Res. 2017 May 09;7(1):178
pubmed: 28603599
Ann N Y Acad Sci. 2015 Apr;1343:10-26
pubmed: 25581203
Neuroimage. 2020 Dec;223:117362
pubmed: 32919059
Handb Clin Neurol. 2018;151:119-140
pubmed: 29519455
Clin Imaging. 2020 Sep;65:47-53
pubmed: 32353718
Science. 2013 Nov 1;342(6158):1238411
pubmed: 24179229
J Neurol. 2021 May;268(5):1995-2000
pubmed: 33231724
Auris Nasus Larynx. 2022 Oct;49(5):737-747
pubmed: 35387740
Adv Neurol. 1997;73:297-309
pubmed: 8959221
Eur Arch Otorhinolaryngol. 2018 Jun;275(6):1429-1437
pubmed: 29687182
Mov Disord. 2015 Apr 15;30(5):671-9
pubmed: 25600482
Neuropsychiatr Dis Treat. 2018 Nov 05;14:2965-2971
pubmed: 30464481
Semin Neurol. 2020 Feb;40(1):49-58
pubmed: 31935770
Data Brief. 2019 Jan 22;23:103666
pubmed: 30788394
J Vestib Res. 2017;27(4):191-208
pubmed: 29036855
Rinsho Shinkeigaku. 2021 May 19;61(5):279-287
pubmed: 33867417
Front Neurosci. 2022 Aug 12;16:896746
pubmed: 36033609
Neurology. 2004 Feb 10;62(3):473-5
pubmed: 14872035
AJNR Am J Neuroradiol. 2019 Oct;40(10):1658-1664
pubmed: 31515217
Vestn Otorinolaringol. 2020;85(5):51-56
pubmed: 33140934
Cereb Cortex. 2008 Aug;18(8):1779-87
pubmed: 18063566
J Psychiatry Neurosci. 2019 Sep 11;45(2):88-97
pubmed: 31509368
J Neurol Neurosurg Psychiatry. 2007 Jul;78(7):710-5
pubmed: 17135456
Neuroimage. 2008 Sep 1;42(3):1178-84
pubmed: 18598773
Arch Otolaryngol. 1967 May;85(5):535-6
pubmed: 6023710
Front Neurol. 2022 Apr 12;13:828642
pubmed: 35493847
Clin Neuroradiol. 2021 Dec;31(4):953-967
pubmed: 34297137
Exp Brain Res. 2015 Jan;233(1):237-52
pubmed: 25300959
Neuroradiol J. 2017 Aug;30(4):305-317
pubmed: 28353416
Neurology. 2015 Apr 21;84(16):1680-4
pubmed: 25817840
J Neurophysiol. 2018 Sep 1;120(3):1438-1450
pubmed: 29995604
Front Neurol. 2021 Sep 21;12:674100
pubmed: 34621231
Brain. 2008 Oct;131(Pt 10):2538-52
pubmed: 18515323
Sci Rep. 2015 Nov 20;5:16891
pubmed: 26586449
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7900-5
pubmed: 27357684
Nat Commun. 2021 May 24;12(1):3043
pubmed: 34031407
Eur Arch Otorhinolaryngol. 2022 Jul;279(7):3237-3256
pubmed: 35218384
Front Integr Neurosci. 2014 Jun 02;8:47
pubmed: 24917796
PLoS One. 2016 Nov 8;11(11):e0165935
pubmed: 27824897
Eur Arch Otorhinolaryngol. 2016 Oct;273(10):3157-65
pubmed: 26926693
Front Neurosci. 2020 Aug 04;14:830
pubmed: 32848582
Anat Rec B New Anat. 2004 Sep;280(1):15-9
pubmed: 15382110
J Neurosci. 2010 Feb 24;30(8):3022-42
pubmed: 20181599
Neurosurg Clin N Am. 2011 Apr;22(2):133-9, vii
pubmed: 21435566
Hum Brain Mapp. 2018 Jan;39(1):300-318
pubmed: 29024299
J Neurol. 2019 Jun;266(6):1293-1302
pubmed: 30120563
J Psychiatry Neurosci. 2019 Oct 03;45(1):55-68
pubmed: 31580042
Cleve Clin J Med. 2022 Nov 1;89(11):653-662
pubmed: 36319052
Neuroscience. 2012 Jun 14;212:159-79
pubmed: 22516007
Neuropsychologia. 2018 Aug;117:311-321
pubmed: 29940194
Front Neurol. 2015 Jun 26;6:144
pubmed: 26167157
Brain Res Rev. 2011 Jun 24;67(1-2):119-46
pubmed: 21223979
Ann Neurol. 2003 Nov;54(5):615-24
pubmed: 14595651
Neurologist. 2008 Nov;14(6):355-64
pubmed: 19008741
Exp Brain Res. 1996 Dec;112(3):523-6
pubmed: 9007554
J Vestib Res. 2015;25(3-4):105-17
pubmed: 26756126