A potent and broad-spectrum neutralizing nanobody for SARS-CoV-2 viruses, including all major Omicron strains.
Omicrons
SARS‐CoV‐2
broad spectrum
nanobody
neutralize
Journal
MedComm
ISSN: 2688-2663
Titre abrégé: MedComm (2020)
Pays: China
ID NLM: 101769925
Informations de publication
Date de publication:
Dec 2023
Dec 2023
Historique:
received:
21
04
2023
revised:
08
09
2023
accepted:
14
09
2023
medline:
30
10
2023
pubmed:
30
10
2023
entrez:
30
10
2023
Statut:
epublish
Résumé
SARS-CoV-2 viruses are highly transmissible and immune evasive. It is critical to develop broad-spectrum prophylactic and therapeutic antibodies for potential future pandemics. Here, we used the phage display method to discover nanobodies (Nbs) for neutralizing SARS-CoV-2 viruses especially Omicron strains. The leading nanobody (Nb), namely, Nb4, with excellent physicochemical properties, can neutralize Delta and Omicron subtypes, including BA.1, BA.1.1 (BA.1 + R346K), BA.2, BA.5, BQ.1, and XBB.1. The crystal structure of Nb4 in complex with the receptor-binding domain (RBD) of BA.1 Spike protein reveals that Nb4 interacts with an epitope on the RBD overlapping with the receptor-binding motif, and thus competes with angiotensin-converting enzyme 2 (ACE2) binding. Nb4 is expected to be effective for neutralizing most recent Omicron variants, since the epitopes are evolutionarily conserved among them. Indeed, trivalent Nb4 interacts with the XBB1.5 Spike protein with low nM affinity and competes for ACE2 binding. Prophylactic and therapeutic experiments in mice indicated that Nb4 could reduce the Omicron virus loads in the lung. In particular, in prophylactic experiments, intranasal administration of multivalent Nb4 completely protected mice from Omicron infection. Taken together, these results demonstrated that Nb4 could serve as a potent and broad-spectrum prophylactic and therapeutic Nb for COVID-19.
Identifiants
pubmed: 37901798
doi: 10.1002/mco2.397
pii: MCO2397
pmc: PMC10600506
doi:
Types de publication
Journal Article
Langues
eng
Pagination
e397Informations de copyright
© 2023 The Authors. MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.
Déclaration de conflit d'intérêts
H.Y. designed and performed the phage display screening assay, purified selected Nbs, and characterized them using BLI assay with assistance from Zhiying Z. and Y.Z. H.Y. generated all plasmids, purified Nbs, and some RBDs for all follow‐up mechanistic, crystallization, Cryo‐EM, and functional experiments. The crystal structure was also analyzed by H.Y. H.W. purified ACE2 and Nb4‐Fc proteins, performed binding kinetics and competition assays, crystallized and determined crystal structure of the RBD1–Nb4 complex, and tested Nb stabilities. Zhaoyong Z. and X.X. evaluated. J.Z. and Y.W. conceived and designed the protection capacity of Nbs in vitro and in vivo. Y.L. under supervision of Haitao Y. solved Cryo‐EM structures of BA.1/Nb4 and BA.5/Nb4 complexes. H.Y., Z.W., and W.X. drafted the manuscript with inputs and revisions from all co‐authors. All authors have read and approved the final manuscript.H.Y., W.X., H.W., Zhiying Z., Y.Z., Z.W., Y.L., and Haitao Y. filed patents on Nb4 nanobody and the application for COVID‐19 treatment and prevention and the PCT number is PCT/CN2022/084209. Zhaoyong Z., X.X., Y.W., and J.Z. declare that they have no conflicts of interest.
Références
Sci Immunol. 2022 Oct 28;7(76):eabp9962
pubmed: 35926067
Cell Res. 2022 Sep;32(9):831-842
pubmed: 35906408
Front Microbiol. 2022 Jun 02;13:875840
pubmed: 35722331
Cell Rep. 2022 Jun 28;39(13):111004
pubmed: 35738279
Viruses. 2022 Jun 18;14(6):
pubmed: 35746806
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501
pubmed: 20383002
N Engl J Med. 2021 Apr 22;384(16):1568-1571
pubmed: 33826817
Cell Rep. 2022 Jun 28;39(13):111009
pubmed: 35732171
Cell Rep. 2022 Feb 15;38(7):110368
pubmed: 35123652
Nat Methods. 2017 Apr;14(4):331-332
pubmed: 28250466
Science. 2022 Feb 25;375(6583):864-868
pubmed: 35076256
Nature. 2020 May;581(7807):215-220
pubmed: 32225176
Nat Rev Immunol. 2023 Jun;23(6):381-396
pubmed: 36536068
Nature. 2023 Feb;614(7948):521-529
pubmed: 36535326
Cell. 2022 Jul 7;185(14):2422-2433.e13
pubmed: 35772405
Nanoscale. 2022 May 19;14(19):7110-7122
pubmed: 35535618
MAbs. 2020 Jan-Dec;12(1):1854149
pubmed: 33319649
Cell Rep. 2022 May 3;39(5):110770
pubmed: 35477022
Science. 2021 Feb 12;371(6530):681-682
pubmed: 33574203
Trends Microbiol. 2021 Mar;29(3):195-203
pubmed: 33446406
Nature. 2022 Feb;602(7898):664-670
pubmed: 35016195
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Nat Methods. 2017 Mar;14(3):290-296
pubmed: 28165473
Cell Rep Med. 2023 Feb 21;4(2):100918
pubmed: 36702124
Curr Microbiol. 2021 Apr;78(4):1124-1134
pubmed: 33687511
Nature. 2022 Feb;602(7898):671-675
pubmed: 35016199
Nature. 2022 Feb;602(7898):654-656
pubmed: 35016196
Signal Transduct Target Ther. 2020 Oct 10;5(1):236
pubmed: 33040075
Cell. 2022 Feb 17;185(4):630-640.e10
pubmed: 35093192
Methods Enzymol. 1997;276:307-26
pubmed: 27754618
Nature. 2022 Aug;608(7923):593-602
pubmed: 35714668
Cell. 2021 Apr 15;184(8):2183-2200.e22
pubmed: 33756110
N Engl J Med. 2023 Feb 2;388(5):406-417
pubmed: 36577095
Nature. 2022 Apr;604(7906):553-556
pubmed: 35240676
Profiles Drug Subst Excip Relat Methodol. 2023;48:71-108
pubmed: 37061276
Nat Commun. 2021 Aug 3;12(1):4676
pubmed: 34344900
Nature. 2022 Feb;602(7898):657-663
pubmed: 35016194
Acta Crystallogr D Struct Biol. 2019 Oct 1;75(Pt 10):861-877
pubmed: 31588918
Lancet Infect Dis. 2023 Jan;23(1):30-32
pubmed: 36495917
Acta Crystallogr D Biol Crystallogr. 2010 Feb;66(Pt 2):213-21
pubmed: 20124702
J Nanobiotechnology. 2022 Sep 15;20(1):411
pubmed: 36109732
PLoS Pathog. 2021 Oct 14;17(10):e1009542
pubmed: 34648602
Immunity. 2021 Sep 14;54(9):2143-2158.e15
pubmed: 34453881
Nature. 2022 Jul;607(7917):119-127
pubmed: 35576972
Sci Transl Med. 2023 Jan 18;15(679):eabq4064
pubmed: 36327352
Nature. 2022 Feb;602(7898):676-681
pubmed: 35016198