Review of artificial intelligence clinical applications in Nuclear Medicine.


Journal

Nuclear medicine communications
ISSN: 1473-5628
Titre abrégé: Nucl Med Commun
Pays: England
ID NLM: 8201017

Informations de publication

Date de publication:
01 Jan 2024
Historique:
pubmed: 30 10 2023
medline: 30 10 2023
entrez: 30 10 2023
Statut: ppublish

Résumé

This paper provides an in-depth analysis of the clinical applications of artificial intelligence (AI) in Nuclear Medicine, focusing on three key areas: neurology, cardiology, and oncology. Beginning with neurology, specifically Alzheimer's disease and Parkinson's disease, the paper examines reviews on diagnosis and treatment planning. The same pattern is followed in cardiology studies. In the final section on oncology, the paper explores the various AI applications in multiple cancer types, including lung, head and neck, lymphoma, and pancreatic cancer.

Identifiants

pubmed: 37901920
doi: 10.1097/MNM.0000000000001786
pii: 00006231-990000000-00228
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

24-34

Informations de copyright

Copyright © 2023 Wolters Kluwer Health, Inc. All rights reserved.

Références

Tang A, Tam R, Cadrin-Chênevert A, Guest W, Chong J, Barfett J, et al.; Canadian Association of Radiologists (CAR) Artificial Intelligence Working Group. Canadian Association of Radiologists white paper on artificial intelligence in radiology. Can Assoc Radiol J 2018; 69:120–135.
McBee MP, Awan OA, Colucci AT, Ghobadi CW, Kadom N, Kansagra AP, et al. Deep learning in radiology. Acad Radiol 2018; 25:1472–1480.
Langlotz CP, Allen B, Erickson BJ, Kalpathy-Cramer J, Bigelow K, Cook TS, et al. A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology 2019; 291:781–791.
Decuyper M, Maebe J, Van Holen R, Vandenberghe S. Artificial intelligence with deep learning in nuclear medicine and radiology. EJNMMI Phys 2021; 8:81.
Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 2019; 29:102–127.
Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. Radiographics 2017; 37:2113–2131.
Castiglioni I, Rundo L, Codari M, Di Leo G, Salvatore C, Interlenghi M, et al. AI applications to medical images: From machine learning to deep learning. Phys Med 2021; 83:9–24.
What is machine learning? | IBM. https://www.ibm.com/topics/machine-learning . [Accessed 15 May 2023]
Schulz MA, Yeo BTT, Vogelstein JT, Mourao-Miranada J, Kather JN, Kording K, et al. Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets. Nat Commun 2020; 11:4238.
Uribe CF, Mathotaarachchi S, Gaudet V, Smith KC, Rosa-Neto P, Bénard F, et al. Machine learning in nuclear medicine: part 1—introduction. J Nucl Med 2019; 60:451–458.
Duffy IR, Boyle AJ, Vasdev N. Improving pet imaging acquisition and analysis with machine learning: a narrative review with focus on Alzheimer’s disease and oncology. Mol Imaging 2019; 18:153601211986907.
Magesh PR, Myloth RD, Tom RJ. An explainable machine learning model for early detection of Parkinson’s disease using lime on datscan imagery. Comput Biol Med 2020; 126:104041.
Martin-Isla C, Campello VM, Izquierdo C, Raisi-Estabragh Z, Baeßler B, Petersen SE, et al. Image-based cardiac diagnosis with machine learning: a review. Front Cardiovasc Med 2020; 7:1.
Toyama Y, Hotta M, Motoi F, Takanami K, Minamimoto R, Takase K. Prognostic value of FDG-PET radiomics with machine learning in pancreatic cancer. Sci Rep 2020; 10:17024.
Tang J, Yang B, Adams MP, Shenkov NN, Klyuzhin IS, Fotouhi S, et al. Artificial neural network–based prediction of outcome in Parkinson’s disease patients using datscan spect imaging features. Mol Imaging Biol 2019; 21:1165–1173.
Moazemi S, Khurshid Z, Erle A, Lütje S, Essler M, Schultz T, et al. Machine learning facilitates hotspot classification in PSMA-PET/ct with nuclear medicine specialist accuracy. Diagnostics (Basel) 2020; 10:622.
Huang G, Lin C, Cai Y, Chen T-B, Hsu S-Y, Lu N-H, et al. Multiclass machine learning classification of functional brain images for Parkinson’s disease stage prediction. Stat Anal Data Min 2020; 13:508–523.
Kaplan Berkaya S, Ak Sivrikoz I, Gunal S. Classification models for SPECT myocardial perfusion imaging. Comput Biol Med 2020; 123:103893.
Wang T, Lei Y, Fu Y, Curran WJ, Liu T, Nye JA, et al. Machine learning in quantitative PET: a review of attenuation correction and low-count image reconstruction methods. Phys Med. 2020; 76:294–306.
Zhang T, Shi M. Multi-modal neuroimaging feature fusion for diagnosis of Alzheimer’s disease. J Neurosci Methods 2020; 341:108795.
Papandrianos N, Papageorgiou E, Anagnostis A, Feleki A. A deep-learning approach for diagnosis of metastatic breast cancer in bones from whole-body scans. App Sci 2020; 10:997.
Liu Y, Xu Y, Meng X, Wang X, Bai T. A study on the auxiliary diagnosis of thyroid disease images based on multiple dimensional deep learning algorithms. Curr Med Imaging 2020; 16:199–205.
Hu Z, Li Y, Zou S, Xue H, Sang Z, Liu X, et al. Obtaining PET/CT images from non-attenuation corrected PET images in a single PET system using Wasserstein generative adversarial networks. Phys Med Biol 2020; 65:215010.
Xiang H, Lim H, Fessler JA, Dewaraja YK. A deep neural network for fast and accurate scatter estimation in quantitative SPECT/CT under challenging scatter conditions. Eur J Nucl Med Mol Imaging 2020; 47:2956–2967.
Reader AJ, Corda G, Mehranian A, Costa-Luis CD, Ellis S, Schnabel JA. Deep learning for pet image reconstruction. IEEE Trans Radiat Plasma Med Sci 2021; 5:1–25.
Johnson A, Grumbling E. Implications of Artificial Intelligence for Cybersecurity: Proceedings of a Workshop. The National Academies Press; 2019.
Bal A, Banerjee M, Chaki R, Sharma P. An efficient method for PET image denoising by combining multi-scale transform and non-local means. Multimed Tools Appl 2020; 79:29087–29120.
Ramon AJ, Yang Y, Pretorius PH, Johnson KL, King MA, Wernick MN. Improving diagnostic accuracy in low-dose spect myocardial perfusion imaging with convolutional denoising networks. IEEE Trans Med Imaging 2020; 39:2893–2903.
Blanc-Durand P, Jégou S, Kanoun S, Berriolo-Riedinger A, Bodet-Milin C, Kraeber-Bodéré F, et al. Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network. Eur J Nucl Med Mol Imaging 2021; 48:1362–1370.
Wolterink JM. Left ventricle segmentation in the era of deep learning. J Nucl Cardiol 2020; 27:988–991.
Sethi M, Ahuja S, Singh S, Snehi J, Chawla M. An intelligent framework for Alzheimer’s disease classification using efficient net transfer learning model. In: 2022 International Conference on Emerging Smart Computing and Informatics (ESC I). IEEE; 2022:1–4. doi:10.1109/ESCI53509.2022.9758195
Hsu SY, Yeh LR, Chen TB, Du W-C, Huang Y-H, Twan W-H, et al. Classification of the multiple stages of Parkinson’s disease by a deep convolution neural network based on 99mtc-trodat-1 spect images. Molecules 2020; 25:4792.
Liew C. The future of radiology augmented with artificial intelligence: a strategy for success. Eur J Radiol 2018; 102:152–156.
Gorospe-Sarasúa L, Muñoz-Olmedo JM, Sendra-Portero F, De Luis-García R. Challenges of Radiology education in the era of artificial intelligence. Radiologia (Engl Ed) 2022; 64:54–59.
Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K, et al. Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol 2018; 15:504–508.
Visvikis D, Lambin P, Beuschau Mauridsen K, Hustinx R, Lassmann M, Rischpler C, et al. Application of artificial intelligence in nuclear medicine and molecular imaging: a review of current status and future perspectives for clinical translation. Eur J Nucl Med Mol Imaging 2022; 49:4452–4463.
Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017; 42:60–88.
Mazurowski MA, Buda M, Saha A, Bashir MR. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI. J Magn Reson Imaging 2019; 49:939–954.
Gore JC. Artificial intelligence in medical imaging. Magn Reson Imaging 2020; 68:A1–A4.
Rueckert D, Schnabel JA. Model-based and data-driven strategies in medical image computing. Proc IEEE 2020; 108:110–124.
Zhou SK, Greenspan H, Davatzikos C, Duncan JS, van Ginneken B, Madabhushi A, et al. A review of deep learning in medical imaging: imaging traits, technology trends, case studies with progress highlights, and future promises. Proc IEEE Inst Electr Electron Eng 2021; 109:820–838.
Katako A, Shelton P, Goertzen AL, Levin D, Bybel B, Aljuaid M, et al. Machine learning identified an Alzheimer’s disease-related FDG-PET pattern which is also expressed in Lewy body dementia and Parkinson’s disease dementia. Sci Rep 2018; 8:13236.
Liu M, Cheng D, Yan W; Alzheimer’s Disease Neuroimaging Initiative. Classification of Alzheimer’s disease by combination of convolutional and recurrent neural networks using FDG-PET images. Front Neuroinform 2018; 12:35.
Lu D, Popuri K, Ding GW, Balachandar R, Beg MF; Alzheimer’s Disease Neuroimaging Initiative. Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci Rep 2018; 8:5697.
Choi H, Ha S, Kang H, Lee H, Lee DS; Alzheimer's Disease Neuroimaging Initiative. Deep learning only by normal brain PET identify unheralded brain anomalies. EBioMedicine 2019; 43:447–453.
Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, et al. A deep learning model to predict a diagnosis of alzheimer disease by using 18 f-fdg pet of the brain. Radiology 2019; 290:456–464.
Lu D, Popuri K, Ding GW, Balachandar R, Beg MF; Alzheimer’s Disease Neuroimaging Initiative. Multiscale deep neural network based analysis of FDG-PET images for the early diagnosis of Alzheimer’s disease. Med Image Anal 2018; 46:26–34.
Choi H, Jin KH; Alzheimer’s Disease Neuroimaging Initiative. Predicting cognitive decline with deep learning of brain metabolism and amyloid imaging. Behav Brain Res 2018; 344:103–109.
Choi H, Kim YK, Yoon EJ, Lee JY, Lee DS; Alzheimer’s Disease Neuroimaging Initiative. Cognitive signature of brain FDG PET based on deep learning: domain transfer from Alzheimer’s disease to Parkinson’s disease. Eur J Nucl Med Mol Imaging 2020; 47:403–412.
Son HJ, Oh JS, Oh M, Kim SJ, Lee J-H, Roh JH, et al. The clinical feasibility of deep learning-based classification of amyloid PET images in visually equivocal cases. Eur J Nucl Med Mol Imaging 2020; 47:332–341.
Anisha CD, Arulanand N. Comparative analysis of machine learning algorithms for early prediction of parkinson’s disorder based on voice features. JAICN 2023; 4:312–323.
Kim DH, Wit H, Thurston M. Artificial intelligence in the diagnosis of Parkinson’s disease from ioflupane-123 single-photon emission computed tomography dopamine transporter scans using transfer learning. Nucl Med Commun 2018; 39:887–893.
Govindu A, Palwe S. Early detection of Parkinson’s disease using machine learning. Procedia Comput Sci 2023; 218:249–261.
Slart RHJA, Williams MC, Juarez-Orozco LE, Rischpler C, Dweck MR, Glaudemans AWJM, et al. Position paper of the EACVI and EANM on artificial intelligence applications in multimodality cardiovascular imaging using SPECT/CT, PET/CT, and cardiac CT. Eur J Nucl Med Mol Imaging 2021; 48:1399–1413.
Betancur J, Otaki Y, Motwani M, Fish MB, Lemley M, Dey D, et al. Prognostic value of combined clinical and myocardial perfusion imaging data using machine learning. JACC Cardiovasc Imaging 2018; 11:1000–1009.
Betancur J, Hu LH, Commandeur F, Sharir T, Einstein AJ, Fish MB, et al. Deep learning analysis of upright-supine high-efficiency spect myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study. J Nucl Med 2019; 60:664–670.
Betancur J, Commandeur F, Motlagh M, Sharir T, Einstein AJ, Bokhari S, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion spect. JACC Cardiovasc Imaging 2018; 11:1654–1663.
Hu LH, Betancur J, Sharir T, Einstein AJ, Bokhari S, Fish MB, et al. Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry. Eur Heart J Cardiovasc Imaging 2020; 21:549–559.
Nakajima K, Kudo T, Nakata T, Kiso K, Kasai T, Taniguchi Y, et al. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study. Eur J Nucl Med Mol Imaging 2017; 44:2280–2289.
Betancur J, Rubeaux M, Fuchs TA, Otaki Y, Arnson Y, Slipczuk L, et al. Automatic valve plane localization in myocardial perfusion spect/ct by machine learning: anatomic and clinical validation. J Nucl Med 2017; 58:961–967.
Togo R, Hirata K, Manabe O, Ohira H, Tsujino I, Magota K, et al. Cardiac sarcoidosis classification with deep convolutional neural network-based features using polar maps. Comput Biol Med 2019; 104:81–86.
Christie JR, Lang P, Zelko LM, Palma DA, Abdelrazek M, Mattonen SA. Artificial intelligence in lung cancer: bridging the gap between computational power and clinical decision-making. Can Assoc Radiol J 2021; 72:86–97.
Sadaghiani MS, Rowe SP, Sheikhbahaei S. Applications of artificial intelligence in oncologic 18F-FDG PET/CT imaging: a systematic review. Ann Transl Med 2021; 9:823–823.
Teramoto A, Fujita H, Yamamuro O, Tamaki T. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique: FP reduction for pulmonary nodule detection using CNN. Med Phys 2016; 43:2821–2827.
Wu J, Tan Y, Chen Z, Zhao M. Decision based on big data research for non-small cell lung cancer in medical artificial system in developing country. Comput Methods Programs Biomed 2018; 159:87–101.
Nasrullah N, Sang J, Alam MS, Mateen M, Cai B, Hu H. Automated lung nodule detection and classification using deep learning combined with multiple strategies. Sensors 2019; 19:3722.
McDermott S, Kilcoyne A, Wang Y, Scott JA, Halpern EF, Ackman JB. Comparison of the 18F-FDG avidity at PET of benign and malignant pure ground-glass opacities: a paradox? Clin Radiol 2019; 74:187–195.
Zhong Z, Kim Y, Plichta K, Allen BG, Zhou L, Buatti J, et al. Simultaneous cosegmentation of tumors in PET - CT images using deep fully convolutional networks. Med Phys 2019; 46:619–633.
Kawata Y, Arimura H, Ikushima K, Jin Z, Morita K, Tokunaga C, et al. Impact of pixel-based machine-learning techniques on automated frameworks for delineation of gross tumor volume regions for stereotactic body radiation therapy. Phys Med 2017; 42:141–149.
Yoshida H, Näppi J, MacEneaney P, Rubin DT, Dachman AH. Computer-aided diagnosis scheme for detection of polyps at ct colonography. Radiographics 2002; 22:963–979.
Schwyzer M, Ferraro DA, Muehlematter UJ, Curioni-Fontecedro A, Huellner MW, von Schulthess GK, et al. Automated detection of lung cancer at ultralow dose PET/CT by deep neural networks – Initial results. Lung Cancer 2018; 126:170–173.
Ma Y, Feng W, Wu Z, Liu M, Zhang F, Liang Z, et al. Intra-tumoural heterogeneity characterization through texture and colour analysis for differentiation of non-small cell lung carcinoma subtypes. Phys Med Biol 2018; 63:165018.
Guo Z, Guo N, Gong K, Zhong S, Li Q. Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network. Phys Med Biol 2019; 64:205015.
Riegel AC, Berson AM, Destian S, Ng T, Tena LB, Mitnick RJ, et al. Variability of gross tumor volume delineation in head-and-neck cancer using CT and PET/CT fusion . Int J Radiat Oncol Biol Phys 2006; 65:726–732.
Jeanneret-Sozzi W, Moeckli R, Valley JF, Zouhair A, Ozsahin EM, Mirimanoff R-O; SASRO. The reasons for discrepancies in target volume delineation: a sasro study on head-and-neck and prostate cancers. Strahlenther Onkol 2006; 182:450–457.
Huang B, Chen Z, Wu PM, Ye Y, Feng S-T, Wong CO, et al. Fully automated delineation of gross tumor volume for head and neck cancer on pet-ct using deep learning: a dual-center study. Contrast Media Mol Imaging 2018; 2018:1–12.
Chen L, Zhou Z, Sher D, Zhang Q, Shah J, Pham N-L, et al. Combining many-objective radiomics and 3D convolutional neural network through evidential reasoning to predict lymph node metastasis in head and neck cancer. Phys Med Biol 2019; 64:075011.
Weisman AJ, Kieler MW, Perlman SB, Hutchings M, Jeraj R, Kostakoglu L, et al. Convolutional neural networks for automated pet/ct detection of diseased lymph node burden in patients with lymphoma. Radiol Artif Intell 2020; 2:e200016.
Bi L, Kim J, Kumar A, Wen L, Feng D, Fulham M. Automatic detection and classification of regions of FDG uptake in whole-body PET-CT lymphoma studies. Comput Med Imaging Graph 2017; 60:3–10.
Sibille L, Seifert R, Avramovic N, Vehren T, Spottiswoode B, Zuehlsdorff S, et al. 18 f-fdg pet/ct uptake classification in lymphoma and lung cancer by using deep convolutional neural networks. Radiology 2020; 294:445–452.
Pinochet P, Eude F, Becker S, Shah V, Sibille L, Toledano MN, et al. Evaluation of an automatic classification algorithm using convolutional neural networks in oncological positron emission tomography. Front med 2021; 8:628179.
Sadik M, Lind E, Polymeri E, Enqvist O, Ulén J, Trägårdh E. Automated quantification of reference levels in liver and mediastinal blood pool for the Deauville therapy response classification using FDG-PET/CT in Hodgkin and non-Hodgkin lymphomas. Clin Physiol Funct Imaging 2019; 39:78–84.
Huang B, Huang H, Zhang S, Zhang D, Shi Q, Liu J, et al. Artificial intelligence in pancreatic cancer. Theranostics 2022; 12:6931–6954.
Li S, Jiang H, Wang Z, Zhang G, Yao Y. An effective computer aided diagnosis model for pancreas cancer on PET/CT images. Comput Methods Programs Biomed 2018; 165:205–214.
Zhang Y, Cheng C, Liu Z, Wang L, Pan G, Sun G, et al. Radiomics analysis for the differentiation of autoimmune pancreatitis and pancreatic ductal adenocarcinoma in 18 F - FDG PET/CT. Med Phys 2019; 46:4520–4530.
Ataeinia B, Heidari P. Artificial intelligence and the future of diagnostic and therapeutic radiopharmaceutical development. PET Clinics 2021; 16:513–523.

Auteurs

Emmanouil Panagiotidis (E)

Nuclear Medicine Department, Cancer Hospital of Thessaloniki 'Theagenio' and .

Konstantinos Papachristou (K)

Medical Physics Department, Cancer Hospital of Thessaloniki 'Theagenio', Thessaloniki, Greece.

Anna Makridou (A)

Medical Physics Department, Cancer Hospital of Thessaloniki 'Theagenio', Thessaloniki, Greece.

Lydia-Aggeliki Zoglopitou (LA)

Medical Physics Department, Cancer Hospital of Thessaloniki 'Theagenio', Thessaloniki, Greece.

Anna Paschali (A)

Nuclear Medicine Department, Cancer Hospital of Thessaloniki 'Theagenio' and .

Theodoros Kalathas (T)

Nuclear Medicine Department, Cancer Hospital of Thessaloniki 'Theagenio' and .

Michael Chatzimarkou (M)

Medical Physics Department, Cancer Hospital of Thessaloniki 'Theagenio', Thessaloniki, Greece.

Vasiliki Chatzipavlidou (V)

Nuclear Medicine Department, Cancer Hospital of Thessaloniki 'Theagenio' and .

Classifications MeSH