Easy to Use DFT Approach for Computational pKa Determination of Carboxylic Acids.
CAM-B3LYP
DFT
Solvation Model based on Density (SMD)
carboxylic acid
computational pKa
pKa
Journal
Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783
Informations de publication
Date de publication:
30 Oct 2023
30 Oct 2023
Historique:
received:
28
09
2023
pubmed:
30
10
2023
medline:
30
10
2023
entrez:
30
10
2023
Statut:
aheadofprint
Résumé
In pKa computational determination, the challenge in exploring and fostering new methodologies and approaches goes in parallel with the amelioration of computational performances. In this paper a "ready to use methodology" has been compared to other strategies, such as the re-shaping in solvation cavity (Bondi radius re-shaping), wanting to assess its reliability in predicting the pKa of a broad list of carboxylic acids. Thus, the functionals B3LYP and CAM-B3LYP have been selected, using SMD as continuum solvation model. Exploiting our previous results, two water molecules were made explicit on the reaction centre. Data show that our model (CAM-B3LYP/2H
Identifiants
pubmed: 37902415
doi: 10.1002/chem.202303167
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202303167Informations de copyright
© 2023 Wiley-VCH GmbH.
Références
G. Schuurman, M. Cossi, V. Barone, J. Tomasi, J. Phys. Chem. A 1998, 102, 6706-6712.
C. De Souza Silva, R. Custodio, J. Phys. Chem. A 2019, 123, 8314-8320.
J. Wu, Y. Kang, P. Pan, T. Hou, Drug Discovery Today 2022, 27 (12), 1-8.
C. Anstöter, B. A. Caine, P. L. A. Popelier, J. Chem. Inf. Model. 2016, 56, 471-483.
B. A. Caine, M. Bronzato, T. Fraser, N. Kidley, C. Dardonville, P. L. A. Popelier, Communications Chemistry 2020, 3 (21), 1-10.
B. A. Caine, M. Bronzatoc, P. L. A. Popelier, Chem. Sci. 2019, 10, 6368-6381.
B. Thapa, H. B. Schlegel, J. Phys. Chem. A 2016, 120, 8916-8922.
J. Ho, M. L. Coote, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2011, 1, 649-660.
S. Banerjee, S. K. Bhanja, P. K. Chattopadhyay, Comp and Theor. Chem. 2018, 1125, 29-38.
S. Pezzola, S. Tarallo, A. Iannini, M. Venanzi, P. Galloni, V. Conte, F. Sabuzi, Molecules 2022, 27, 8590.
B. Thapa, H. B. Schlegel, J. Phys. Chem. A 2017, 121, 4698-4706.
F. R. Dutra, C. de Souza Silva, R. Custodio, J. Phys. Chem. A 2021, 125, 65-73.
C. Ballatore, D. M. Huryn, A. B. Smith ChemMedChem 2013, 8, 385-395.
R. Sang, P. Kucmierczyk, R. Dghren, R. Razzaq, K. Dong, J. Liu, R. Franke, R. Jackstell, M. Beller, Angew. Chem. Int. Ed. 2019, 58, 14365-14373.
A. G. Riojas, A. K. Wilson, J. Chem. Theory Comput. 2014, 10, 1500-1510.
M. Schmit am Bussch, E. W. Knapp, ChemPhysChem 2004, 5, 1513-1522.
C. De Souza Silva, D. H. Pereira, R. Custodio, J. Chem. Phys. 2016 144, 204118.
P. Lian, R. C. Johnston, J. M. Parks, J. Smith, J. Phys. Chem. A 2018, 122, 4366-4374.
E. Engelage, N. Schulz, F. Heinen, S. M. Huber, D. G. Truhlar, C. J. Cramer, Chem. Eur. J. 2018, 24, 15983-15987.
A. Ghiami-Shomami, M. Ashtari-Delivand, B. Ghalami-Choobar, Compute. Their. Chem. 2020, 1190, 113008.
V. Galasso, F. Pichierri, J. Phys. Chem. A 2009, 113, 2534-2543.
F. Sabuzi, M. Stefanelli, D. Monti, V. Conte, P. Galloni, Molecules 2020, 25, 133.
J. B Foresman, AE. Frisch, Exploring Chemistry with Electronic Structure Methods, 3rd ed., Gaussian, Inc.: Wallingford, CT, 2015. ISBN: 978-1-935522-03-4.
S. Mirzaei, M. V. Ivanonv, Q. K. Timerghazin, J. Phys. Chem. A 2019, 123, 9498-9504.
L. Xu, M. L. Coote, J. Phys. Chem. A 2019, 123, 7430-7438.
B. Thapa, H. B. Schlegel, J. Phys. Chem. A 2015, 119, 5134-5144.
S. Böhm, P. Fieldler, O. Exner, New J. Chem. 2004, 28, 67-74.
S. Böhm, O. Exner, Chem. Eur. J. 2000, 6, 33391-3398.
J. Kulhanek, O. Pytela, Collect. Czech. Chem. Commun. 1997, 62, 913-924.
J. S. Murray, P. Politzer, WIREs Comput. Mol. Sci. 2011, 1, 153-163.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H Nakai, T. Vreven, K. Throssell, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, J. E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, J. D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
B. Thapa, H. B. Schlegel, J. Phys. Chem. A 2016, 120, 5726-5735.