WGS-based screening of the co-chaperone protein DjlA-induced curved DNA binding protein A (CbpA) from a new multidrug-resistant zoonotic mastitis-causing Klebsiella pneumoniae strain: a novel molecular target of selective flavonoids.

Co-chaperone DjlA protein DnaK Co-chaperone CbpA protein Multidrug-resistant K. pneumoniae Pharmacokinetics and pharmacodynamics of natural flavonoids Whole genome sequencing

Journal

Molecular diversity
ISSN: 1573-501X
Titre abrégé: Mol Divers
Pays: Netherlands
ID NLM: 9516534

Informations de publication

Date de publication:
30 Oct 2023
Historique:
received: 22 06 2023
accepted: 11 09 2023
medline: 30 10 2023
pubmed: 30 10 2023
entrez: 30 10 2023
Statut: aheadofprint

Résumé

The research aimed to establish a multidrug-resistant Klebsiella pneumoniae-induced genetic model for mastitis considering the alternative mechanisms of the DjlA-mediated CbpA protein regulation. The Whole Genome Sequencing of the newly isolated K. pneumoniae strain was conducted to annotate the frequently occurring antibiotic resistance and virulence factors following PCR and MALDI-TOF mass-spectrophotometry. Co-chaperon DjlA was identified and extracted via restriction digestion on PAGE. Based on the molecular string property analysis of different DnaJ and DnaK type genes, CbpA was identified to be regulated most by the DjlA protein during mastitis. Based on the quantum tunnel-cluster profiles, CbpA was modeled as a novel target for diversified biosynthetic, and chemosynthetic compounds. Pharmacokinetic and pharmacodynamic analyses were conducted to determine the maximal point-specificity of selective flavonoids in complexing with the CbpA macromolecule at molecular docking. The molecular dynamic simulation (100 ns) of each of the flavonoid-protein complexes was studied regarding the parameters RMSD, RMSF, Rg, SASA, MMGBSA, and intramolecular hydrogen bonds; where all of them resulted significantly. To ratify all the molecular dynamic simulation outputs, the potential stability of the flavonoids in complexing with CbpA can be remarked as Quercetin > Biochanin A > Kaempherol > Myricetin, which were all significant in comparison to the control Galangin. Finally, a comprehensive drug-gene interaction pathway for each of the flavonoids was developed to determine the simultaneous and quantitative-synergistic effects of different operons belonging to the DnaJ-type proteins on the metabolism of the tested pharmacophores in CbpA. Considering all the in vitro and in silico parameters, DjlA-mediated CbpA can be a novel target for the tested flavonoids as the potential therapeutics of mastitis as futuristic drugs.

Identifiants

pubmed: 37902899
doi: 10.1007/s11030-023-10731-6
pii: 10.1007/s11030-023-10731-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Bangladesh Academy of Science (BAS) and the United States Department of Agriculture (USDA) Endowment Program
ID : Grant ID: BAS-USDA LS-26/2020 (4th phase)
Organisme : RPG Interface Lab (Registration No. 05-060-06021)
ID : Grant ID: Category-E4-GRP-2021/22 (Phase-2)

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.

Références

Russo TA, Olson R, Fang C-T et al (2018) Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J Clin Microbiol 56:e00776-e818. https://doi.org/10.1128/JCM.00776-18
doi: 10.1128/JCM.00776-18 pubmed: 29925642 pmcid: 6113484
Piperaki E-T, Syrogiannopoulos GA, Tzouvelekis LS, Daikos GL (2017) Klebsiella pneumoniae: virulence, biofilm and antimicrobial resistance. Pediatr Infect Dis J 36:1002. https://doi.org/10.1097/INF.0000000000001675
doi: 10.1097/INF.0000000000001675 pubmed: 28914748
Paczosa MK, Mecsas J (2016) Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev MMBR 80:629–661. https://doi.org/10.1128/MMBR.00078-15
doi: 10.1128/MMBR.00078-15 pubmed: 27307579
Gonzalez-Ferrer S, Peñaloza HF, Budnick JA et al (2021) Finding order in the chaos: outstanding questions in Klebsiella pneumoniae pathogenesis. Infect Immun 89:e00693-e720. https://doi.org/10.1128/IAI.00693-20
doi: 10.1128/IAI.00693-20 pubmed: 33558323 pmcid: 8090965
Hu Y, Anes J, Devineau S, Fanning S (2021) Klebsiella pneumoniae: prevalence, reservoirs, antimicrobial resistance, pathogenicity, and infection: a hitherto unrecognized zoonotic bacterium. Foodborne Pathog Dis 18:63–84. https://doi.org/10.1089/fpd.2020.2847
doi: 10.1089/fpd.2020.2847 pubmed: 33124929
Mohd Asri NA, Ahmad S, Mohamud R et al (2021) Global prevalence of nosocomial multidrug-resistant Klebsiella pneumoniae: a systematic review and meta-analysis. Antibiotics 10:1508. https://doi.org/10.3390/antibiotics10121508
doi: 10.3390/antibiotics10121508 pubmed: 34943720 pmcid: 8698758
David S, Reuter S, Harris SR et al (2019) Epidemic of carbapenem-resistant Klebsiella pneumoniae in Europe is driven by nosocomial spread. Nat Microbiol 4:1919. https://doi.org/10.1038/s41564-019-0492-8
doi: 10.1038/s41564-019-0492-8 pubmed: 31358985 pmcid: 7244338
Rastegar S, Moradi M, Kalantar-Neyestanaki D et al (2019) Virulence factors, capsular serotypes and antimicrobial resistance of hypervirulent Klebsiella pneumoniae and classical Klebsiella pneumoniae in Southeast Iran. Infect Chemother. https://doi.org/10.3947/ic.2019.0027
doi: 10.3947/ic.2019.0027 pubmed: 31782273
Holden VI, Breen P, Houle S et al (2016) Klebsiella pneumoniae siderophores induce inflammation, bacterial dissemination, and HIF-1α stabilization during pneumonia. MBio 7:e01397. https://doi.org/10.1128/mBio.01397-16
doi: 10.1128/mBio.01397-16 pubmed: 27624128 pmcid: 5021805
Navon-Venezia S, Kondratyeva K, Carattoli A (2017) Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 41:252–275. https://doi.org/10.1093/femsre/fux013
doi: 10.1093/femsre/fux013 pubmed: 28521338
Dong N, Yang X, Zhang R et al (2018) Tracking microevolution events among ST11 carbapenemase-producing hypervirulent Klebsiella pneumoniae outbreak strains. Emerg Microbes Infect 7:1–8. https://doi.org/10.1038/s41426-018-0146-6
doi: 10.1038/s41426-018-0146-6
Tang M, Kong X, Hao J, Liu J (2020) Epidemiological characteristics and formation mechanisms of multidrug-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol. https://doi.org/10.3389/fmicb.2020.581543
doi: 10.3389/fmicb.2020.581543 pubmed: 33584582 pmcid: 7786102
Lee C-R, Lee JH, Park KS et al (2017) Antimicrobial resistance of hypervirulent Klebsiella pneumoniae: epidemiology, hypervirulence-associated determinants, and resistance mechanisms. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2017.00483
doi: 10.3389/fcimb.2017.00483 pubmed: 29326886 pmcid: 5736563
Hua Y, Wang J, Huang M et al (2022) Outer membrane vesicles-transmitted virulence genes mediate the emergence of new antimicrobial-resistant hypervirulent Klebsiella pneumoniae. Emerg Microbes Infect 11:1281–1292. https://doi.org/10.1080/22221751.2022.2065935
doi: 10.1080/22221751.2022.2065935 pubmed: 35437096 pmcid: 9132476
Hou M, Chen N, Dong L et al (2022) Molecular epidemiology, clinical characteristics and risk factors for bloodstream infection of multidrug-resistant Klebsiella pneumoniae infections in pediatric patients from Tianjin, China. Infect Drug Resist 15:7015–7023. https://doi.org/10.2147/IDR.S389279
doi: 10.2147/IDR.S389279 pubmed: 36483148 pmcid: 9725917
Gato E, Vázquez-Ucha JC, Rumbo-Feal S et al (2020) Kpi, a chaperone-usher pili system associated with the worldwide-disseminated high-risk clone Klebsiella pneumoniae ST-15. Proc Natl Acad Sci USA 117:17249–17259. https://doi.org/10.1073/pnas.1921393117
doi: 10.1073/pnas.1921393117 pubmed: 32641516 pmcid: 7382220
Moo C-L, Osman MA, Yang S-K et al (2021) Antimicrobial activity and mode of action of 1,8-cineol against carbapenemase-producing Klebsiella pneumoniae. Sci Rep 11:20824. https://doi.org/10.1038/s41598-021-00249-y
doi: 10.1038/s41598-021-00249-y pubmed: 34675255 pmcid: 8531306
Pranavathiyani G, Prava J, Rajeev AC, Pan A (2020) Novel target exploration from hypothetical proteins of Klebsiella pneumoniae MGH 78578 reveals a protein involved in host-pathogen interaction. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2020.00109
doi: 10.3389/fcimb.2020.00109 pubmed: 32318354 pmcid: 7146069
Wickner S, Camberg JL, Doyle SM, Johnston DM (2017) Molecular chaperones. Reference module in life sciences. Elsevier, Amsterdam
Benedetti F, Cocchi F, Latinovic OS et al (2020) Role of mycoplasma chaperone DnaK in cellular transformation. Int J Mol Sci 21:1311. https://doi.org/10.3390/ijms21041311
doi: 10.3390/ijms21041311 pubmed: 32075244 pmcid: 7072988
Mayer MP (2021) The Hsp70-chaperone machines in bacteria. Front Mol Biosci. https://doi.org/10.3389/fmolb.2021.694012
doi: 10.3389/fmolb.2021.694012 pubmed: 34327213 pmcid: 8313502
Moses MA, Zuehlke AD, Neckers L (2018) Molecular chaperone inhibitors. In: Binder RJ, Srivastava PK (eds) Heat Shock proteins in the immune system. Springer, Cham, pp 21–40
doi: 10.1007/978-3-319-69042-1_2
Chengolova Z, Ivanov Y, Grigorova G (2021) The relationship of bovine milk somatic cell count to neutrophil level in samples of cow’s milk assessed by an automatic cell counter. J Dairy Res 88:330–333. https://doi.org/10.1017/S0022029921000534
doi: 10.1017/S0022029921000534 pubmed: 34233772
Alhussien MN, Dang AK (2018) Impact of different seasons on the milk somatic and differential cell counts, milk cortisol and neutrophils functionality of three Indian native breeds of cattle. J Therm Biol 78:27–35. https://doi.org/10.1016/j.jtherbio.2018.08.020
doi: 10.1016/j.jtherbio.2018.08.020 pubmed: 30509646
Al Azad S, Moazzem Hossain K, Rahman SMM et al (2020) In ovo inoculation of duck embryos with different strains of Bacillus cereus to analyse their synergistic post-hatch anti-allergic potentialities. Vet Med Sci 6:992–999. https://doi.org/10.1002/vms3.279
doi: 10.1002/vms3.279 pubmed: 32364675 pmcid: 7738716
Azad SA, Farjana M, Mazumder B et al (2019) Molecular identification of a Bacillus cereus strain from Murrah buffalo milk showed in vitro bioremediation properties on selective heavy metals. J Adv Vet Anim Res 7:62–68. https://doi.org/10.5455/javar.2020.g394
doi: 10.5455/javar.2020.g394 pubmed: 32219111 pmcid: 7096113
Lou W, Venkataraman S, Zhong G et al (2018) Antimicrobial polymers as therapeutics for treatment of multidrug-resistant Klebsiella pneumoniae lung infection. Acta Biomater 78:78–88. https://doi.org/10.1016/j.actbio.2018.07.038
doi: 10.1016/j.actbio.2018.07.038 pubmed: 30031912
Saleem M, Syed Khaja AS, Hossain A et al (2022) Molecular characterization and antibiogram of acinetobacter baumannii clinical isolates recovered from the patients with ventilator-associated pneumonia. Healthcare 10:2210. https://doi.org/10.3390/healthcare10112210
doi: 10.3390/healthcare10112210 pubmed: 36360551 pmcid: 9690950
Nonnemann B, Lyhs U, Svennesen L et al (2019) Bovine mastitis bacteria resolved by MALDI-TOF mass spectrometry. J Dairy Sci 102:2515–2524. https://doi.org/10.3168/jds.2018-15424
doi: 10.3168/jds.2018-15424 pubmed: 30639010
Islam S, Farjana M, Uddin MR et al (2022) Molecular identification, characterization, and antagonistic activity profiling of Bacillus cereus LOCK 1002 along with the in-silico analysis of its presumptive bacteriocins. J Adv Vet Anim Res 9:663–675. https://doi.org/10.5455/javar.2022.i635
doi: 10.5455/javar.2022.i635 pubmed: 36714520 pmcid: 9868795
Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol 13:e1005595. https://doi.org/10.1371/journal.pcbi.1005595
doi: 10.1371/journal.pcbi.1005595 pubmed: 28594827 pmcid: 5481147
Alcock BP, Huynh W, Chalil R et al (2023) CARD 2023: expanded curation, support for machine learning, and resistome prediction at the comprehensive antibiotic resistance database. Nucleic Acids Res 51:D690–D699. https://doi.org/10.1093/nar/gkac920
doi: 10.1093/nar/gkac920 pubmed: 36263822
Chen C-Y, Clark CG, Langner S et al (2020) Detection of antimicrobial resistance using proteomics and the comprehensive antibiotic resistance database: a case study. Proteom Clin Appl 14:e1800182. https://doi.org/10.1002/prca.201800182
doi: 10.1002/prca.201800182
Morshed AKMH, Al Azad S, Mia MdAR et al (2022) Oncoinformatic screening of the gene clusters involved in the HER2-positive breast cancer formation along with the in silico pharmacodynamic profiling of selective long-chain omega-3 fatty acids as the metastatic antagonists. Mol Divers. https://doi.org/10.1007/s11030-022-10573-8
doi: 10.1007/s11030-022-10573-8 pubmed: 36445532 pmcid: 9188638
Huang JK, Carlin DE, Yu MK et al (2018) Systematic evaluation of molecular networks for discovery of disease genes. Cell Syst 6:484-495.e5. https://doi.org/10.1016/j.cels.2018.03.001
doi: 10.1016/j.cels.2018.03.001 pubmed: 29605183 pmcid: 5920724
Jabin A, Uddin MF, Al Azad S et al (2023) Target-specificity of different amyrin subunits in impeding HCV influx mechanism inside the human cells considering the quantum tunnel profiles and molecular strings of the CD81 receptor: a combined in silico and in vivo study. Silico Pharmacol 11:8. https://doi.org/10.1007/s40203-023-00144-6
doi: 10.1007/s40203-023-00144-6
Sharif MA, Hossen MS, Shaikat MM, et al (2021) Molecular optimization, docking and dynamic simulation study of selective natural aromatic components to block E2-CD81 complex formation in predating protease inhibitor resistant HCV influx. Int J Pharm Res. https://doi.org/10.31838/ijpr/2021.13.02.408
doi: 10.31838/ijpr/2021.13.02.408
Chen L, Zheng D, Liu B et al (2016) VFDB 2016: hierarchical and refined dataset for big data analysis–10 years on. Nucleic Acids Res 44:D694-697. https://doi.org/10.1093/nar/gkv1239
doi: 10.1093/nar/gkv1239 pubmed: 26578559
Liu B, Zheng D, Zhou S et al (2021) VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res 50:D912–D917. https://doi.org/10.1093/nar/gkab1107
doi: 10.1093/nar/gkab1107 pmcid: 8728188
Azad S, Ahmed S, Biswas P et al (2022) Quantitative analysis of the factors influencing IDA and TSH downregulation in correlation to the fluctuation of activated vitamin D3 in women. J Adv Biotechnol Exp Ther 5:320. https://doi.org/10.5455/jabet.2022.d118
doi: 10.5455/jabet.2022.d118
Lemoine F, Correia D, Lefort V et al (2019) NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 47:W260–W265. https://doi.org/10.1093/nar/gkz303
doi: 10.1093/nar/gkz303 pubmed: 31028399 pmcid: 6602494
Gialama D, Delivoria DC, Michou M et al (2017) Functional requirements for DjlA- and RraA-mediated enhancement of recombinant membrane protein production in the engineered Escherichia coli strains SuptoxD and SuptoxR. J Mol Biol 429:1800–1816. https://doi.org/10.1016/j.jmb.2017.05.003
doi: 10.1016/j.jmb.2017.05.003 pubmed: 28501587
Dey D, Paul PK, Al Azad S et al (2021) Molecular optimization, docking, and dynamic simulation profiling of selective aromatic phytochemical ligands in blocking the SARS-CoV-2 S protein attachment to ACE2 receptor: an in silico approach of targeted drug designing. J Adv Vet Anim Res 8:24–35. https://doi.org/10.5455/javar.2021.h481
doi: 10.5455/javar.2021.h481 pubmed: 33860009 pmcid: 8043340
Arefin A, Ismail Ema T, Islam T et al (2021) Target specificity of selective bioactive compounds in blocking α-dystroglycan receptor to suppress Lassa virus infection: an in silico approach. J Biomed Res 35:459–473. https://doi.org/10.7555/JBR.35.20210111
doi: 10.7555/JBR.35.20210111 pubmed: 34857680 pmcid: 8637655
Ferdausi N, Islam S, Rimti FH et al (2022) Point-specific interactions of isovitexin with the neighboring amino acid residues of the hACE2 receptor as a targeted therapeutic agent in suppressing the SARS-CoV-2 influx mechanism. J Adv Vet Anim Res 9:230–240. https://doi.org/10.5455/javar.2022.i588
doi: 10.5455/javar.2022.i588 pubmed: 35891654 pmcid: 9298103
Nipun TS, Ema TI, Mia MdAR et al (2021) Active site-specific quantum tunneling of hACE2 receptor to assess its complexing poses with selective bioactive compounds in co-suppressing SARS-CoV-2 influx and subsequent cardiac injury. J Adv Vet Anim Res 8:540–556. https://doi.org/10.5455/javar.2021.h544
doi: 10.5455/javar.2021.h544 pubmed: 35106293 pmcid: 8757663
Paul PK, Al Azad S, Rahman MH et al (2022) Catabolic profiling of selective enzymes in the saccharification of non-food lignocellulose parts of biomass into functional edible sugars and bioenergy: an in silico bioprospecting. J Adv Vet Anim Res 9:19–32. https://doi.org/10.5455/javar.2022.i565
doi: 10.5455/javar.2022.i565 pubmed: 35445120 pmcid: 8985887
Akter KM, Tushi T, Jahan Mily S et al (2020) RT-PCR mediated identification of SARS-CoV-2 patients from particular regions of Bangladesh and the multi-factorial analysis considering their pre and post infection health conditions. Biotechnol J Int 24:43–56. https://doi.org/10.9734/bji/2020/v24i630121
doi: 10.9734/bji/2020/v24i630121
Hossain A, Proma TS, Raju R et al (2022) Employment-related musculoskeletal complications experienced by the physical therapists in Bangladesh: a comprehensive cross-sectional case study. Bull Fac Phys Ther 27:36. https://doi.org/10.1186/s43161-022-00096-6
doi: 10.1186/s43161-022-00096-6
Islam R, Akter KM, Rahman A et al (2021) The serological basis of the correlation between iron deficiency anemia and thyroid disorders in women: a community based study. J Pharm Res Int 33:69–81. https://doi.org/10.9734/jpri/2021/v33i19A31330
doi: 10.9734/jpri/2021/v33i19A31330
Mohammad Rashaduzzaman M, Mohammad Kamrujjaman M, Mohammad Ariful Islam MA et al (2019) An experimental analysis of different point specific musculoskeletal pain among selected adolescent-club cricketers in Dhaka City. Eur J Clin Exp Med. https://doi.org/10.15584/ejcem.2019.4.4
doi: 10.15584/ejcem.2019.4.4
Akther T, Rony MKK, Anowar A et al (2021) Comparative analysis of the government investments and revenue from different sectors in Bangladesh and its impact on the development of HRM sectors: a 20 years of study. Int J Bus Manag Soc Res. https://doi.org/10.18801/ijbmsr.100120.58
doi: 10.18801/ijbmsr.100120.58
Paul PK, Swadhin HR, Tushi T et al (2022) The Pros and cons of selective renewable energy technologies for generating electricity in the perspective of Bangladesh: A survey-based profiling of issues. Eur J Energy Res 2:1–8. https://doi.org/10.24018/ejenergy.2022.2.2.33
doi: 10.24018/ejenergy.2022.2.2.33
He M, Li H, Zhang Z et al (2022) Microbiological characteristics and pathogenesis of Klebsiella pneumoniae isolated from hainan black goat. Vet Sci 9:471. https://doi.org/10.3390/vetsci9090471
doi: 10.3390/vetsci9090471 pubmed: 36136687 pmcid: 9501091
Ackers L, Ackers-Johnson G, Welsh J et al (2020) The role of microbiology testing in controlling infection and promoting antimicrobial stewardship. In: Ackers L, Ackers-Johnson G, Welsh J et al (eds) Anti-microbial resistance in global perspective. Springer, Cham, pp 81–102
doi: 10.1007/978-3-030-62662-4_5
Chakraborty S, Mohsina K, Sarker PK et al (2016) Prevalence, antibiotic susceptibility profiles and ESBL production in Klebsiella pneumoniae and Klebsiella oxytoca among hospitalized patients. Period Biol. https://doi.org/10.18054/pb.v118i1.3160
doi: 10.18054/pb.v118i1.3160
Tascini C, Sozio E, Viaggi B, Meini S (2016) Reading and understanding an antibiogram. Ital J Med 10:289–300. https://doi.org/10.4081/itjm.2016.794
doi: 10.4081/itjm.2016.794
Liu L, Li F, Xu L et al (2020) Cyclic AMP-CRP modulates the cell morphology of Klebsiella pneumoniae in high-glucose environment. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02984
doi: 10.3389/fmicb.2019.02984 pubmed: 33633699 pmcid: 7785755
Sugimoto S, Yamanaka K, Niwa T et al (2021) Hierarchical model for the role of J-domain proteins in distinct cellular functions. J Mol Biol 433:166750. https://doi.org/10.1016/j.jmb.2020.166750
doi: 10.1016/j.jmb.2020.166750 pubmed: 33310019
Fay A, Philip J, Saha P et al (2021) The DnaK chaperone system buffers the fitness cost of antibiotic resistance mutations in mycobacteria. MBio 12:e00123. https://doi.org/10.1128/mBio.00123-21
doi: 10.1128/mBio.00123-21 pubmed: 33785614 pmcid: 8092207
Min Y, Xu W, Xiao Y et al (2021) Biomineralization improves the stability of a Streptococcus pneumoniae protein vaccine at high temperatures. Nanomed 16:1747–1761. https://doi.org/10.2217/nnm-2021-0023
doi: 10.2217/nnm-2021-0023
Chae C, Sharma S, Hoskins JR, Wickner S (2004) CbpA, a DnaJ homolog, is a DnaK co-chaperone, and its activity is modulated by CbpM*♦. J Biol Chem 279:33147–33153. https://doi.org/10.1074/jbc.M404862200
doi: 10.1074/jbc.M404862200 pubmed: 15184371
Rezanejad M, Karimi S, Momtaz H (2019) Phenotypic and molecular characterization of antimicrobial resistance in Trueperella pyogenes strains isolated from bovine mastitis and metritis. BMC Microbiol 19:305. https://doi.org/10.1186/s12866-019-1630-4
doi: 10.1186/s12866-019-1630-4 pubmed: 31881834 pmcid: 6935153
Zastempowska E, Lassa H (2012) Genotypic characterization and evaluation of an antibiotic resistance of Trueperella pyogenes (Arcanobacterium pyogenes) isolated from milk of dairy cows with clinical mastitis. Vet Microbiol 161:153–158. https://doi.org/10.1016/j.vetmic.2012.07.018
doi: 10.1016/j.vetmic.2012.07.018 pubmed: 22868181
Dang Y, Lin G, Xie Y et al (2014) Quantitative determination of myricetin in rat plasma by ultra performance liquid chromatography tandem mass spectrometry and its absolute bioavailability. Drug Res 64:516–522. https://doi.org/10.1055/s-0033-1363220
doi: 10.1055/s-0033-1363220
Fatima S, Gupta P, Sharma S et al (2020) ADMET profiling of geographically diverse phytochemical using chemoinformatic tools. Future Med Chem 12:69–87. https://doi.org/10.4155/fmc-2019-0206
doi: 10.4155/fmc-2019-0206 pubmed: 31793338
Parikesit AA, Nurdiansyah R (2021) Natural products repurposing of the H5N1-based lead compounds for the most fit inhibitors against 3C-like protease of SARS-CoV-2. J Pharm Pharmacogn Res 9:730–745
doi: 10.56499/jppres21.1080_9.5.730
Khelfaoui H, Harkati D, Saleh BA (2020) Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2020.1803967
doi: 10.1080/07391102.2020.1803967 pubmed: 32752951 pmcid: 7484571
Sepunaru L, Refaely-Abramson S, Lovrinčić R et al (2015) Electronic transport via homopeptides: the role of side chains and secondary structure. J Am Chem Soc 137:9617–9626. https://doi.org/10.1021/jacs.5b03933
doi: 10.1021/jacs.5b03933 pubmed: 26149234
Ostermann AI, Koch E, Rund KM et al (2020) Targeting esterified oxylipins by LC–MS—effect of sample preparation on oxylipin pattern. Prostaglandins Other Lipid Mediat 146:106384. https://doi.org/10.1016/j.prostaglandins.2019.106384
doi: 10.1016/j.prostaglandins.2019.106384 pubmed: 31698140
Chen D, Oezguen N, Urvil P et al (2016) Regulation of protein-ligand binding affinity by hydrogen bond pairing. Sci Adv 2:e1501240. https://doi.org/10.1126/sciadv.1501240
doi: 10.1126/sciadv.1501240 pubmed: 27051863 pmcid: 4820369
Li M, Li D, Tang Y et al (2017) CytoCluster: a cytoscape plugin for cluster analysis and visualization of biological networks. Int J Mol Sci 18:1880. https://doi.org/10.3390/ijms18091880
doi: 10.3390/ijms18091880 pubmed: 28858211 pmcid: 5618529
Naha A, Banerjee S, Debroy R et al (2022) Network metrics, structural dynamics and density functional theory calculations identified a novel ursodeoxycholic acid derivative against therapeutic target Parkin for Parkinson’s disease. Comput Struct Biotechnol J 20:4271–4287. https://doi.org/10.1016/j.csbj.2022.08.017
doi: 10.1016/j.csbj.2022.08.017 pubmed: 36051887 pmcid: 9399899
Malik FK, Guo J (2022) Insights into protein–DNA interactions from hydrogen bond energy-based comparative protein–ligand analyses. Proteins 90:1303–1314. https://doi.org/10.1002/prot.26313
doi: 10.1002/prot.26313 pubmed: 35122321 pmcid: 9018545
Semwal DK, Semwal RB, Combrinck S, Viljoen A (2016) Myricetin: A dietary molecule with diverse biological activities. Nutrients 8:90. https://doi.org/10.3390/nu8020090
doi: 10.3390/nu8020090 pubmed: 26891321 pmcid: 4772053
Mishra A, Ranganathan S, Jayaram B, Sattar A (2018) Role of solvent accessibility for aggregation-prone patches in protein folding. Sci Rep 8:12896. https://doi.org/10.1038/s41598-018-31289-6
doi: 10.1038/s41598-018-31289-6 pubmed: 30150761 pmcid: 6110721
Jiang M, Zhu M, Wang L, Yu S (2019) Anti-tumor effects and associated molecular mechanisms of myricetin. Biomed Pharmacother 120:109506. https://doi.org/10.1016/j.biopha.2019.109506
doi: 10.1016/j.biopha.2019.109506 pubmed: 31586904
Bhargava P, Mahanta D, Kaul A et al (2021) Experimental evidence for therapeutic potentials of propolis. Nutrients 13:2528. https://doi.org/10.3390/nu13082528
doi: 10.3390/nu13082528 pubmed: 34444688 pmcid: 8397973
Bennett S, Fliss I, Ben Said L et al (2022) Efficacy of bacteriocin-based formula for reducing staphylococci, streptococci, and total bacterial counts on teat skin of dairy cows. J Dairy Sci 105:4498–4507. https://doi.org/10.3168/jds.2021-21381
doi: 10.3168/jds.2021-21381 pubmed: 35346465
Dey D, Ema T, Biswas P et al (2021) Antiviral effects of bacteriocin against animal-to-human transmittable mutated SARS-COV-2: a systematic review. Front Agric Sci Eng. https://doi.org/10.15302/J-FASE-2021397
doi: 10.15302/J-FASE-2021397
Al-Mamun M, Hasan M, Azad S et al (2016) Evaluation of potential probiotic characteristics of isolated lactic acid bacteria from goat milk. Br Biotechnol J 14:1–7. https://doi.org/10.9734/BBJ/2016/26397
doi: 10.9734/BBJ/2016/26397
Azad SA, Mamun MAA, Mondal KJ et al (2016) Range of various fungal infections to local and hybrid varieties of non-germinated lentil seed in Bangladesh. J Biosci Agric Res 9:775–781. https://doi.org/10.18801/jbar.090116.93
doi: 10.18801/jbar.090116.93
Azad SA, Shahriyar S, Mondal KJ (2016) Opsonin and its mechanism of action in secondary immune response. J Mol Stud Med Res 1:48–56. https://doi.org/10.18801/jmsmr.010216.06
doi: 10.18801/jmsmr.010216.06
Azad SA, Khan I, Salauddin AA, Khan I (2019) HAMLET (human alpha-lactalbumin made lethal to tumor cells)—a hope for the cancer patients. Adv Pharmacol Clin Trials 4(1):000152
Biswas P, Dey D, Biswas PK et al (2022) A comprehensive analysis and anti-cancer activities of quercetin in ROS-mediated cancer and cancer stem cells. Int J Mol Sci 23:11746. https://doi.org/10.3390/ijms231911746
doi: 10.3390/ijms231911746 pubmed: 36233051 pmcid: 9569933

Auteurs

Mohammad Habibur Rahman (MH)

Molecular Microbiology and Vaccinology Lab, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.

Salauddin Al Azad (S)

Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China.
Immunoinformatics and Vaccinomics Research Unit, RPG Interface Lab, Jashore, 7400, Bangladesh.

Mohammad Fahim Uddin (MF)

College of Material Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, People's Republic of China.
Immunoinformatics and Vaccinomics Research Unit, RPG Interface Lab, Jashore, 7400, Bangladesh.

Maisha Farzana (M)

School of Medicine, Dentistry and Nursing, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.

Iffat Ara Sharmeen (IA)

Department of Mathematics & Natural Sciences, School of Data Sciences, BRAC University, Dhaka, 1212, Bangladesh.

Kaifi Sultana Kabbo (KS)

Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh.

Anika Jabin (A)

Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh.
Immunoinformatics and Vaccinomics Research Unit, RPG Interface Lab, Jashore, 7400, Bangladesh.

Ashfaque Rahman (A)

Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh.
Immunoinformatics and Vaccinomics Research Unit, RPG Interface Lab, Jashore, 7400, Bangladesh.

Farhan Jamil (F)

Department of Pharmacy, University of Asia Pacific, Farmgate, Dhaka, 1205, Bangladesh.

Sanjida Ahmed Srishti (SA)

School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.

Fahmida Haque Riya (FH)

School of Pharmacy, BRAC University, 66 Mohakhali, Dhaka, 1212, Bangladesh.

Towhid Khan (T)

Department of Medicine, Comilla Medical College, Kuchaitoli, Comilla, 3500, Bangladesh.

Rasel Ahmed (R)

School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, TS1 3BX, UK.
Department of Mathematics, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh.

Samiur Rahman (S)

Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh.
Immunoinformatics and Vaccinomics Research Unit, RPG Interface Lab, Jashore, 7400, Bangladesh.

Mohammad Ferdousur Rahman Khan (MFR)

Molecular Microbiology and Vaccinology Lab, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.

Md Bahanur Rahman (MB)

Molecular Microbiology and Vaccinology Lab, Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh. bahanurr@bau.edu.bd.

Classifications MeSH