Identifying Human miRNA Target Sites via Learning the Interaction Patterns between miRNA and mRNA Segments.
Journal
Journal of chemical information and modeling
ISSN: 1549-960X
Titre abrégé: J Chem Inf Model
Pays: United States
ID NLM: 101230060
Informations de publication
Date de publication:
30 Oct 2023
30 Oct 2023
Historique:
medline:
30
10
2023
pubmed:
30
10
2023
entrez:
30
10
2023
Statut:
aheadofprint
Résumé
miRNAs (microRNAs) target specific mRNA (messenger RNA) sites to regulate their translation expression. Although miRNA targeting can rely on seed region base pairing, animal miRNAs, including human miRNAs, typically cooperate with several cofactors, leading to various noncanonical pairing rules. Therefore, identifying the binding sites of animal miRNAs remains challenging. Because experiments for mapping miRNA targets are costly, computational methods are preferred for extracting potential miRNA-mRNA fragment binding pairs first. However, existing prediction tools can have significant false positives due to the prevalent noncanonical miRNA binding behaviors and the information-biased training negative sets that were used while constructing these tools. To overcome these obstacles, we first prepared an information-balanced miRNA binding pair ground-truth data set. A miRNA-mRNA interaction-aware model was then designed to help identify miRNA binding events. On the test set, our model (auROC = 94.4%) outperformed existing models by at least 2.8% in auROC. Furthermore, we showed that this model can suggest potential binding patterns for miRNA-mRNA sequence interacting pairs. Finally, we made the prepared data sets and the designed model available at http://cosbi2.ee.ncku.edu.tw/mirna_binding/download.
Identifiants
pubmed: 37903033
doi: 10.1021/acs.jcim.3c01150
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM