Geminal-Based Strategies for Modeling Large Building Blocks of Organic Electronic Materials.
Journal
The journal of physical chemistry letters
ISSN: 1948-7185
Titre abrégé: J Phys Chem Lett
Pays: United States
ID NLM: 101526034
Informations de publication
Date de publication:
09 Nov 2023
09 Nov 2023
Historique:
medline:
30
10
2023
pubmed:
30
10
2023
entrez:
30
10
2023
Statut:
ppublish
Résumé
We elaborate on unconventional electronic structure methods based on geminals and their potential to advance the rapidly developing field of organic photovoltaics (OPVs). Specifically, we focus on the computational advantages of geminal-based methods over standard approaches and identify the critical aspects of OPV development. Examples are reliable and efficient computations of orbital energies, electronic spectra, and van der Waals interactions. Geminal-based models can also be combined with quantum embedding techniques and a quantum information analysis of orbital interactions to gain a fundamental understanding of the electronic structures and properties of realistic OPV building blocks. Furthermore, other organic components present in, for instance, dye-sensitized solar cells (DSSCs) represent another promising scope of application. Finally, we provide numerical examples predicting the properties of a small building block of OPV components and two carbazole-based dyes proposed as possible DSSC sensitizers.
Identifiants
pubmed: 37903084
doi: 10.1021/acs.jpclett.3c02434
pmc: PMC10641881
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
9909-9917Références
J Chem Phys. 2021 Aug 28;155(8):084802
pubmed: 34470369
J Chem Phys. 2016 Dec 21;145(23):234105
pubmed: 28010086
Phys Rev Lett. 2008 Apr 11;100(14):146401
pubmed: 18518055
J Chem Theory Comput. 2019 Jul 9;15(7):4021-4035
pubmed: 31136703
J Chem Theory Comput. 2021 Jan 12;17(1):79-95
pubmed: 33430597
J Chem Phys. 2022 May 7;156(17):174102
pubmed: 35525665
Phys Chem Chem Phys. 2022 Sep 14;24(35):21296-21307
pubmed: 36043327
J Phys Chem Lett. 2023 Aug 3;14(30):6792-6799
pubmed: 37478417
J Chem Phys. 2022 May 21;156(19):194103
pubmed: 35597662
J Chem Theory Comput. 2015 Nov 10;11(11):5252-61
pubmed: 26574319
Chem Commun (Camb). 2021 Nov 19;57(92):12277-12280
pubmed: 34738608
J Phys Chem Lett. 2012 Nov 1;3(21):3129-35
pubmed: 26296018
Molecules. 2020 Aug 12;25(16):
pubmed: 32806573
J Phys Chem Lett. 2020 Sep 17;11(18):7536-7543
pubmed: 32808788
J Chem Phys. 2014 Jun 7;140(21):214114
pubmed: 24907997
J Chem Phys. 2014 Mar 21;140(11):114107
pubmed: 24655172
J Phys Chem A. 2022 Feb 24;126(7):1312-1319
pubmed: 35166552
J Chem Phys. 2022 Dec 7;157(21):214104
pubmed: 36511561
J Chem Phys. 2020 Sep 14;153(10):104110
pubmed: 32933287
J Phys Chem A. 2007 Mar 1;111(8):1554-61
pubmed: 17279730
J Chem Phys. 2022 Jun 7;156(21):214110
pubmed: 35676122
J Chem Phys. 2016 Jun 28;144(24):244111
pubmed: 27369501
J Chem Theory Comput. 2013 Jul 9;9(7):2959-73
pubmed: 26583979
J Chem Theory Comput. 2022 Sep 13;18(9):5276-5285
pubmed: 35922401
Phys Chem Chem Phys. 2015 Sep 14;17(34):22412-22
pubmed: 26249820
J Comput Chem. 2004 Sep;25(12):1463-73
pubmed: 15224390
J Chem Phys. 2004 Feb 1;120(5):2105-9
pubmed: 15268348
Phys Chem Chem Phys. 2023 Jul 12;25(27):18023-18029
pubmed: 37378457
J Chem Theory Comput. 2016 Apr 12;12(4):1760-71
pubmed: 26959891
Adv Mater. 2011 Jan 11;23(2):268-84
pubmed: 21154741
J Chem Phys. 2020 Oct 28;153(16):164117
pubmed: 33138426
J Comput Chem. 2011 May;32(7):1456-65
pubmed: 21370243
J Phys Chem A. 2016 Sep 29;120(38):7554-60
pubmed: 27606487
Phys Chem Chem Phys. 2023 Sep 27;25(37):25377-25388
pubmed: 37705409
Phys Chem Chem Phys. 2017 Feb 8;19(6):4317-4329
pubmed: 28116368
J Phys Chem A. 2014 Oct 2;118(39):9058-68
pubmed: 24745368
J Chem Theory Comput. 2019 Feb 12;15(2):1016-1027
pubmed: 30525591
Phys Chem Chem Phys. 2014 Mar 21;16(11):5061-5
pubmed: 24488215
J Chem Theory Comput. 2014 Oct 14;10(10):4332-41
pubmed: 26588130
Adv Mater. 2012 Feb 2;24(5):613-36
pubmed: 22228467
J Chem Phys. 2014 Jun 7;140(21):214113
pubmed: 24907996
J Chem Theory Comput. 2014 Nov 11;10(11):4873-82
pubmed: 26584374
J Chem Theory Comput. 2021 Sep 14;17(9):5538-5555
pubmed: 34517707
J Mol Model. 2018 Dec 26;25(1):7
pubmed: 30588537
Chem Rev. 2012 Jan 11;112(1):289-320
pubmed: 22191548
Chem Commun (Camb). 2018 Dec 6;54(98):13763-13772
pubmed: 30465555
J Chem Theory Comput. 2013 Jun 11;9(6):2602-8
pubmed: 26583856
Phys Chem Chem Phys. 2014 Jan 14;16(2):719-27
pubmed: 24263815
J Chem Phys. 2013 Nov 7;139(17):174111
pubmed: 24206291
J Chem Theory Comput. 2017 Dec 12;13(12):5966-5983
pubmed: 28921980
Phys Chem Chem Phys. 2015 Apr 14;17(14):8622-6
pubmed: 25761196
J Chem Theory Comput. 2017 Nov 14;13(11):5404-5419
pubmed: 28921975
Phys Rev Lett. 2018 Jan 5;120(1):013001
pubmed: 29350961
RSC Adv. 2023 Sep 20;13(40):27898-27911
pubmed: 37736567
Phys Chem Chem Phys. 2014 May 21;16(19):8872-80
pubmed: 24682225
J Chem Phys. 2014 Dec 28;141(24):244104
pubmed: 25554130
J Chem Phys. 2018 Jun 28;148(24):244101
pubmed: 29960325
Phys Rev A Gen Phys. 1985 Aug;32(2):748-755
pubmed: 9896122
Nat Mater. 2022 Jun;21(6):656-663
pubmed: 35513501
Phys Chem Chem Phys. 2016 Aug 3;18(31):21111-21
pubmed: 27031794
J Chem Theory Comput. 2020 Jul 14;16(7):4159-4175
pubmed: 32433873
J Chem Phys. 2013 Oct 21;139(15):154105
pubmed: 24160498
J Chem Phys. 2021 Feb 28;154(8):084111
pubmed: 33639735
J Chem Theory Comput. 2013 Mar 12;9(3):1394-401
pubmed: 26587601
Acc Chem Res. 2014 Nov 18;47(11):3284-91
pubmed: 24784485
Phys Chem Chem Phys. 2022 Oct 5;24(38):23026-23048
pubmed: 36149376
J Am Chem Soc. 2004 Mar 31;126(12):4007-16
pubmed: 15038755
Faraday Discuss. 2014;174:37-56
pubmed: 25270244
J Chem Theory Comput. 2015 Aug 11;11(8):3629-35
pubmed: 26574445
J Chem Theory Comput. 2019 Jan 8;15(1):18-24
pubmed: 30525613
J Phys Chem Lett. 2022 May 19;13(19):4342-4349
pubmed: 35537704
Chem Rev. 2016 Oct 12;116(19):11685-11796
pubmed: 27564253
Phys Chem Chem Phys. 2015 Jun 14;17(22):14427-36
pubmed: 25974313
J Chem Phys. 2017 Oct 7;147(13):139901
pubmed: 28987095