Origin of the residual line width under frequency-switched Lee-Goldburg decoupling in MAS solid-state NMR.
Journal
Magnetic resonance (Gottingen, Germany)
ISSN: 2699-0016
Titre abrégé: Magn Reson (Gott)
Pays: Germany
ID NLM: 101775538
Informations de publication
Date de publication:
2020
2020
Historique:
received:
17
12
2019
accepted:
21
01
2020
medline:
19
2
2020
pubmed:
19
2
2020
entrez:
31
10
2023
Statut:
epublish
Résumé
Homonuclear decoupling sequences in solid-state nuclear magnetic resonance (NMR) under magic-angle spinning (MAS) show experimentally significantly larger residual line width than expected from Floquet theory to second order. We present an in-depth theoretical and experimental analysis of the origin of the residual line width under decoupling based on frequency-switched Lee-Goldburg (FSLG) sequences. We analyze the effect of experimental pulse-shape errors (e.g., pulse transients and
Identifiants
pubmed: 37904890
doi: 10.5194/mr-1-13-2020
pii: 01021829
pmc: PMC10500695
doi:
Types de publication
Journal Article
Langues
eng
Pagination
13-25Informations de copyright
Copyright: © 2020 Johannes Hellwagner et al.
Déclaration de conflit d'intérêts
The authors declare that they have no conflict of interest.
Références
J Am Chem Soc. 2006 Aug 2;128(30):9863-72
pubmed: 16866544
Proc Natl Acad Sci U S A. 2016 Aug 16;113(33):9187-92
pubmed: 27489348
Solid State Nucl Magn Reson. 1993 Sep;2(4):151-63
pubmed: 7827967
J Phys Chem A. 2013 Jun 27;117(25):5280-90
pubmed: 23750836
J Magn Reson. 2018 Aug;293:41-46
pubmed: 29890485
J Magn Reson. 2004 Jul;169(1):39-48
pubmed: 15183355
J Magn Reson. 2016 Feb;263:7-18
pubmed: 26766289
PLoS Biol. 2018 May 21;16(5):e2006192
pubmed: 29782488
J Chem Phys. 2017 Jun 28;146(24):244202
pubmed: 28668064
Angew Chem Int Ed Engl. 2014 Nov 3;53(45):12253-6
pubmed: 25225004
Angew Chem Int Ed Engl. 2015 Oct 19;54(43):12592-6
pubmed: 26465653
J Chem Phys. 2005 Aug 8;123(6):64102
pubmed: 16122295
J Am Chem Soc. 2002 Apr 17;124(15):4158-68
pubmed: 11942855
J Chem Phys. 2012 Feb 28;136(8):084503
pubmed: 22380049
Solid State Nucl Magn Reson. 2010 May-Jun;37(3-4):39-59
pubmed: 20573488
J Magn Reson. 2010 Jun;204(2):327-32
pubmed: 20378380
J Magn Reson. 2004 Sep;170(1):22-41
pubmed: 15324755
J Magn Reson. 2012 Jan;214(1):151-8
pubmed: 22130518
J Magn Reson. 2009 Aug;199(2):208-13
pubmed: 19482494
Phys Chem Chem Phys. 2012 Jul 7;14(25):9121-30
pubmed: 22641015
Angew Chem Int Ed Engl. 2018 Oct 26;57(44):14514-14518
pubmed: 29989288
Prog Nucl Magn Reson Spectrosc. 2016 Nov;97:1-39
pubmed: 27888838
J Magn Reson. 2009 Mar;197(1):14-9
pubmed: 19091609
J Magn Reson. 2012 Oct;223:219-27
pubmed: 22985982
Top Curr Chem. 2005;246:33-90
pubmed: 22160288
J Magn Reson. 2010 Oct;206(2):241-5
pubmed: 20727798
Prog Nucl Magn Reson Spectrosc. 2010 Nov;57(4):345-80
pubmed: 20920756
J Magn Reson. 2009 Apr;197(2):242-4
pubmed: 19121594
J Magn Reson. 2001 Jan;148(1):135-41
pubmed: 11133286
J Magn Reson. 2018 Feb;287:65-73
pubmed: 29289819
J Biomol NMR. 2019 Feb;73(1-2):19-29
pubmed: 30680507
Solid State Nucl Magn Reson. 2015 Oct;71:30-40
pubmed: 26483329