Ancestry-specific regulatory and disease architectures are likely due to cell-type-specific gene-by-environment interactions.
Journal
medRxiv : the preprint server for health sciences
Titre abrégé: medRxiv
Pays: United States
ID NLM: 101767986
Informations de publication
Date de publication:
21 Oct 2023
21 Oct 2023
Historique:
pubmed:
31
10
2023
medline:
31
10
2023
entrez:
31
10
2023
Statut:
epublish
Résumé
Multi-ancestry genome-wide association studies (GWAS) have highlighted the existence of variants with ancestry-specific effect sizes. Understanding where and why these ancestry-specific effects occur is fundamental to understanding the genetic basis of human diseases and complex traits. Here, we characterized genes differentially expressed across ancestries (ancDE genes) at the cell-type level by leveraging single-cell RNA-seq data in peripheral blood mononuclear cells for 21 individuals with East Asian (EAS) ancestry and 23 individuals with European (EUR) ancestry (172K cells); then, we tested if variants surrounding those genes were enriched in disease variants with ancestry-specific effect sizes by leveraging ancestry-matched GWAS of 31 diseases and complex traits (average
Identifiants
pubmed: 37905038
doi: 10.1101/2023.10.20.23297214
pmc: PMC10615008
pii:
doi:
Types de publication
Preprint
Langues
eng
Références
PLoS Genet. 2012;8(4):e1002639
pubmed: 22532805
Cell. 2016 Oct 20;167(3):643-656.e17
pubmed: 27768888
Nat Commun. 2015 Nov 30;6:10047
pubmed: 26616214
Genet Epidemiol. 2019 Mar;43(2):180-188
pubmed: 30474154
Genome Biol. 2010;11(2):R14
pubmed: 20132535
Genome Res. 2013 Sep;23(9):1514-21
pubmed: 23861382
Science. 2020 Sep 11;369(6509):
pubmed: 32913072
Nat Genet. 2018 Apr;50(4):621-629
pubmed: 29632380
Science. 2010 Nov 19;330(6007):1095-9
pubmed: 20929728
Am J Hum Genet. 2022 Jul 7;109(7):1286-1297
pubmed: 35716666
Cell. 2016 Oct 20;167(3):657-669.e21
pubmed: 27768889
Am J Hum Genet. 2016 Jul 7;99(1):76-88
pubmed: 27321947
Science. 2013 Nov 8;342(6159):750-2
pubmed: 24136358
Nat Genet. 2018 Mar;50(3):390-400
pubmed: 29403010
Nat Genet. 2015 Nov;47(11):1236-41
pubmed: 26414676
Nat Genet. 2018 Jul;50(7):906-908
pubmed: 29892013
Am J Hum Genet. 2013 Sep 5;93(3):463-70
pubmed: 23954163
Nat Rev Genet. 2014 Apr;15(4):272-86
pubmed: 24614317
Nature. 2015 Feb 19;518(7539):317-30
pubmed: 25693563
Nat Genet. 2019 Apr;51(4):584-591
pubmed: 30926966
PLoS Genet. 2009 May;5(5):e1000471
pubmed: 19424416
Genome Biol. 2015 Mar 19;16:54
pubmed: 25887593
Nat Genet. 2016 Jan;48(1):30-5
pubmed: 26569126
Science. 2022 Apr 8;376(6589):eabf3041
pubmed: 35389779
PLoS Genet. 2014 May 15;10(5):e1004342
pubmed: 24831947
Nat Ecol Evol. 2017 Oct;1(10):1577-1583
pubmed: 29185505
Nature. 2013 Sep 26;501(7468):506-11
pubmed: 24037378
Nat Genet. 2017 Oct;49(10):1421-1427
pubmed: 28892061
Nat Genet. 2010 Jan;42(1):62-7
pubmed: 19966804
Cell Death Dis. 2016 Aug 25;7(8):e2345
pubmed: 27560714
Science. 2021 Nov 26;374(6571):1127-1133
pubmed: 34822289
Schizophr Bull. 2019 Jun 18;45(4):824-834
pubmed: 30285260
Nature. 2015 Oct 1;526(7571):68-74
pubmed: 26432245
Nat Genet. 2021 Sep;53(9):1283-1289
pubmed: 34493869
Science. 2022 Apr 8;376(6589):eabf1970
pubmed: 35389781
Am J Hum Genet. 2020 Apr 2;106(4):496-512
pubmed: 32220292
Nat Commun. 2021 Feb 17;12(1):1098
pubmed: 33597505
Science. 2015 May 8;348(6235):660-5
pubmed: 25954002
PLoS Genet. 2018 Aug 10;14(8):e1007586
pubmed: 30096133
PLoS Genet. 2014 Aug 14;10(8):e1004549
pubmed: 25121757
Nature. 2023 Sep;621(7977):120-128
pubmed: 37558883
Nature. 2003 Dec 11;426(6967):671-6
pubmed: 14668867
Nat Commun. 2022 Aug 22;13(1):4830
pubmed: 35995775
Nat Genet. 2021 Sep;53(9):1300-1310
pubmed: 34475573
Sci Rep. 2015 Dec 02;5:17453
pubmed: 26625947
Nat Genet. 2023 Apr;55(4):549-558
pubmed: 36941441
Nat Genet. 2022 Jun;54(6):827-836
pubmed: 35668300