Magnetostatic reciprocity for MR magnet design.


Journal

Magnetic resonance (Gottingen, Germany)
ISSN: 2699-0016
Titre abrégé: Magn Reson (Gott)
Pays: Germany
ID NLM: 101775538

Informations de publication

Date de publication:
2021
Historique:
received: 20 03 2021
accepted: 29 06 2021
medline: 4 8 2021
pubmed: 4 8 2021
entrez: 31 10 2023
Statut: epublish

Résumé

Electromagnetic reciprocity has long been a staple in magnetic resonance (MR) radio-frequency development, offering geometrical insights and a figure of merit for various resonator designs. In a similar manner, we use magnetostatic reciprocity to compute manufacturable solutions of complex magnet geometries, by establishing a quantitative metric for the placement and subsequent orientation of discrete pieces of permanent magnetic material. Based on magnetostatic theory and non-linear finite element modelling (FEM) simulations, it is shown how assembled permanent magnet setups perform in the embodiment of a variety of designs and how magnetostatic reciprocity is leveraged in the presence of difficulties associated with self-interactions, to fulfil various design objectives, including self-assembled micro-magnets, adjustable magnetic arrays, and an unbounded magnetic field intensity in a small volume, despite realistic saturation field strengths.

Identifiants

pubmed: 37905211
doi: 10.5194/mr-2-607-2021
pii: 01021829
pmc: PMC10539805
doi:

Types de publication

Journal Article

Langues

eng

Pagination

607-617

Informations de copyright

Copyright: © 2021 Pedro Freire Silva et al.

Déclaration de conflit d'intérêts

The authors declare that they have no conflict of interest.

Références

J Magn Reson. 2017 Sep;282:104-113
pubmed: 28797924
Proc Natl Acad Sci U S A. 2004 Dec 21;101(51):17576-81
pubmed: 15591105
Waste Manag. 2015 Oct;44:48-54
pubmed: 26239935
Angew Chem Int Ed Engl. 2010 Jun 1;49(24):4133-5
pubmed: 20446281
J Magn Reson. 2011 Jan;208(1):27-33
pubmed: 21036637
J Magn Reson. 2012 Feb;215:74-84
pubmed: 22244451
J Magn Reson. 2011 Dec;213(2):329-43
pubmed: 22152352
J Magn Reson. 2019 Sep;306:112-117
pubmed: 31337561
J Magn Reson. 2006 Dec;183(2):228-34
pubmed: 16996759
Magn Reson Imaging. 2006 Oct;24(8):1095-102
pubmed: 16997080
IEEE Trans Magn. 2018 Jan;54(1):
pubmed: 29749974
Science. 1992 Mar 20;255(5051):1523-31
pubmed: 17820163
J Magn Reson. 2007 May;186(1):100-4
pubmed: 17317247
J Magn Reson. 2006 Nov;183(1):25-31
pubmed: 16891134
J Magn Reson. 2005 Mar;173(1):23-8
pubmed: 15705508
Magn Reson Imaging. 2019 Feb;56:168-173
pubmed: 30340797
J Magn Reson. 2017 Apr;277:143-148
pubmed: 28285144
J Magn Reson. 2006 Jun;180(2):274-9
pubmed: 16580238
J Magn Reson. 2017 Feb;275:114-119
pubmed: 28043004
Magn Reson Imaging. 2011 Jul;29(6):869-76
pubmed: 21531102
Science. 2013 Feb 1;339(6119):561-3
pubmed: 23372009
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20601-4
pubmed: 19091950
J Magn Reson. 2010 Jul;205(1):75-85
pubmed: 20451431

Auteurs

Pedro Freire Silva (PF)

Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, 76131 Karlsruhe, Germany.

Mazin Jouda (M)

Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, 76131 Karlsruhe, Germany.

Jan G Korvink (JG)

Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, 76131 Karlsruhe, Germany.

Classifications MeSH