Nanoparticle-based nanocomposite coatings with postprocessing for enhanced antimicrobial capacity of polymeric film.

antimicrobial activity copper nanocomposite titanium dioxide

Journal

Biotechnology and bioengineering
ISSN: 1097-0290
Titre abrégé: Biotechnol Bioeng
Pays: United States
ID NLM: 7502021

Informations de publication

Date de publication:
31 Oct 2023
Historique:
revised: 29 09 2023
received: 22 11 2022
accepted: 10 10 2023
pubmed: 31 10 2023
medline: 31 10 2023
entrez: 31 10 2023
Statut: aheadofprint

Résumé

Bacterial adhesion and biofilm formation on surfaces pose a significant risk of microbial contamination and chronic diseases, leading to potential health complications. To mitigate this concern, the implementation of antibacterial coatings becomes paramount in reducing pathogen propagation on contaminated surfaces. To address this requirement, our study focuses on developing cost-effective and sustainable methods using polymer composite coatings. Copper and titanium dioxide nanoparticles were used to assess their active antimicrobial functions. After coating the surface with nanoparticles, four different combinations of two postprocessing treatments were performed. Intense pulsed light was utilized to sinter the coatings further, and plasma etching was applied to manipulate the physical properties of the nanocomposite-coated sheet surface. Bacterial viability was comparatively analyzed at four different time points (0, 30, 60, and 120 min) upon contact with the nanocomposite coatings. The samples with nanoparticle coatings and postprocessing treatments showed an above-average 84.82% mortality rate at 30 min and an average of 89.77% mortality rate at 120 min of contact. In contrast, the control sample, without nanoparticle coatings and postprocessing treatments, showed a 95% microbe viability after 120 min of contact. Through this study, we gained critical insights into effective strategies for preventing the spread of microorganisms on high-touch surfaces, thereby contributing to the advancement of sustainable antimicrobial coatings.

Identifiants

pubmed: 37905703
doi: 10.1002/bit.28596
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : Alliance Grant and Alberta Innovates Campus Alberta Small Business Engagement Program
Organisme : Natural Sciences and Engineering Research Council of Canada

Informations de copyright

© 2023 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC.

Références

Abbott, J. R., & Zhu, H. (2019). 3D optical surface profiler for quantifying leaf surface roughness. Surface Topography: Metrology and Properties, 7(4), 045016. https://doi.org/10.1088/2051-672X/ab4cc6
Abhinav K, V., Rao R, V. K., Karthik, P. S., & Singh, S. P. (2015). Copper conductive inks: Synthesis and utilization in flexible electronics. RSC Advances, 5(79), 63985-64030. https://doi.org/10.1039/c5ra08205f
Allen, N. S., Mahdjoub, N., Vishnyakov, V., Kelly, P. J., & Kriek, R. J. (2018). The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide (TiO2). Polymer Degradation and Stability, 150, 31-36. https://doi.org/10.1016/j.polymdegradstab.2018.02.008
Allion, A., Baron, J. P., & Boulange-Petermann, L. (2006). Impact of surface energy and roughness on cell distribution and viability. Biofouling, 22(5), 269-278. https://doi.org/10.1080/08927010600902789
Bagherifard, S., Hickey, D. J., de Luca, A. C., Malheiro, V. N., Markaki, A. E., Guagliano, M., & Webster, T. J. (2015a). The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Biomaterials, 73, 185-197. https://doi.org/10.1016/j.biomaterials.2015.09.019
Bahl, P., Doolan, C., De Silva, C., Chughtai, A. A., Bourouiba, L., & Macintyre, C. R. (2022). Airborne or droplet precautions for health workers treating coronavirus disease 2019. The Journal of Infectious Diseases, 225(9), 1561-1568. https://doi.org/10.1093/infdis/jiaa189
Bayoudh, S., Othmane, A., Bettaieb, F., Bakhrouf, A., Ouada, H. B., & Ponsonnet, L. (2006). Quantification of the adhesion free energy between bacteria and hydrophobic and hydrophilic substrata. Materials Science and Engineering: C, 26(2-3), 300-305. https://doi.org/10.1016/j.msec.2005.10.045
Betancourt-Galindo, R., Reyes-Rodriguez, P. Y., Puente-Urbina, B. A., Avila-Orta, C. A., Rodríguez-Fernández, O. S., Cadenas-Pliego, G., Lira-Saldivar, R. H., & García-Cerda, L. A. (2014). Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties. Journal of Nanomaterials, 2014, 1-5. https://doi.org/10.1155/2014/980545
Bhardwaj, R., & Agrawal, A. (2020). Likelihood of survival of coronavirus in a respiratory droplet deposited on a solid surface. Physics of Fluids, 32(6), 61704. https://doi.org/10.1063/5.0012009
Charles, A., Elkaseer, A., Thijs, L., Hagenmeyer, V., & Scholz, S. (2019). Effect of process parameters on the generated surface roughness of down-facing surfaces in selective laser melting. Applied Sciences, 9(6), 1256. https://doi.org/10.3390/app9061256
Chawengkijwanich, C., & Hayata, Y. (2008). Development of TiO2 powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. International Journal of Food Microbiology, 123(3), 288-292. https://doi.org/10.1016/j.ijfoodmicro.2007.12.017
Chou, M. S., & Li, S. C. (2010). Elimination of methyl ethyl ketone in air streams by a biofilter packed with fern chips. Environmental Engineering Science, 27(8), 679-687. https://doi.org/10.1089/ees.2010.0068
Chouirfa, H., Bouloussa, H., Migonney, V., & Falentin-Daudré, C. (2019). Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomaterialia, 83, 37-54. https://doi.org/10.1016/j.actbio.2018.10.036
Civardi, C., Schwarze, F. W. M. R., & Wick, P. (2015). Micronized copper wood preservatives: An efficiency and potential health risk assessment for copper-based nanoparticles. Environmental Pollution, 200, 126-132. https://doi.org/10.1016/j.envpol.2015.02.018
Das, P. E., Abu-Yousef, I. A., Majdalawieh, A. F., Narasimhan, S., & Poltronieri, P. (2020). Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moringa oleifera leaves and assessment of their antioxidant and antimicrobial activities. Molecules, 25(3), 555. https://doi.org/10.3390/molecules25030555
de Dicastillo, C. L., Correa, M. G., Martínez, F. B., Streitt, C., & Galotto, M. J. (2020). Antimicrobial effect of titanium dioxide nanoparticles. Antimicrobial Resistance-A One Health Perspective.
Din, M. I., & Rehan, R. (2017). Synthesis, characterization, and applications of copper nanoparticles. Analytical Letters, 50(1), 50-62. https://doi.org/10.1080/00032719.2016.1172081
Ding, L., Shao, L., & Bai, Y. (2014). Deciphering the mechanism of corona discharge treatment of BOPET film. RSC Advances, 4(42), 21782-21787. https://doi.org/10.1039/c4ra02289k
Edachery, V., Shashank, R., & Kailas, S. V. (2021). Influence of surface texture directionality and roughness on wettability, sliding angle, contact angle hysteresis, and lubricant entrapment capability. Tribology International, 158(January):106932. https://doi.org/10.1016/j.triboint.2021.106932
Ghann, W., Kang, H., Sheikh, T., Yadav, S., Chavez-Gil, T., Nesbitt, F., & Uddin, J. (2017). Fabrication, optimization and characterization of natural dye sensitized solar cell. Scientific Reports, 7, 41470. https://doi.org/10.1038/srep41470
Gharechahi, M., Moosavi, H., & Forghani, M. (2012). Effect of surface roughness and materials composition. Journal of Biomaterials and Nanobiotechnology, 03(04), 541-546. https://doi.org/10.4236/jbnb.2012.324056
Govind, V., Bharadwaj, S., Sai Ganesh, M. R., Vishnu, J., Shankar, K. V., Shankar, B., & Rajesh, R. (2021). Antiviral properties of copper and its alloys to inactivate covid-19 virus: A review. BioMetals, 34(6), 1217-1235. https://doi.org/10.1007/s10534-021-00339-4
Haider, A. J., Jameel, Z. N., & Al-Hussaini, I. H. M. (2019). Review on: Titanium dioxide applications. Energy Procedia, 157, 17-29. https://doi.org/10.1016/j.egypro.2018.11.159
Huang, T., Qian, Y., Wei, J., & Zhou, C. (2019). Polymeric antimicrobial food packaging and its applications. Polymers, 11(3), 560. https://doi.org/10.3390/polym11030560
Huhtamäki, T., Tian, X., Korhonen, J. T., & Ras, R. H. A. (2018). Surface-wetting characterization using contact-angle measurements. Nature Protocols, 13(7), 1521-1538.
Hutasoit, N., Kennedy, B., Hamilton, S., Luttick, A., Rahman Rashid, R. A., & Palanisamy, S. (2020). Sars-CoV-2 (COVID-19) inactivation capability of copper-coated touch surface fabricated by cold-spray technology. Manufacturing Letters, 25, 93-97. https://doi.org/10.1016/j.mfglet.2020.08.007
Jain, A., Duvvuri, L. S., Farah, S., Beyth, N., Domb, A. J., & Khan, W. (2014). Antimicrobial polymers. Advanced Healthcare Materials, 3(12), 1969-1985. https://doi.org/10.1002/adhm.201400418
Jang, Y. R., Jeong, R., Kim, H. S., & Park, S. S. (2021). Fabrication of solderable intense pulsed light sintered hybrid copper for flexible conductive electrodes. Scientific Reports, 11(1), 14551. https://doi.org/10.1038/s41598-021-94024-8
Jeong, R., Kumar, H., Jones, S., Sandwell, A., Kim, K., & Park, S. S. (2021). Increased sanitization potency of hydrogen peroxide with synergistic O3and intense pulsed light for non-woven polypropylene. RSC Advances, 11(39), 23881-23891. https://doi.org/10.1039/d1ra03675k
Jiang, Z., Hu, C., Easa, S. M., Zheng, X., & Zhang, Y. (2017). Evaluation of physical, rheological, and structural properties of vulcanized EVA/SBS modified bitumen. Journal of Applied Polymer Science, 134(21), 44850. https://doi.org/10.1002/app.44850
Kalachyova, Y., Olshtrem, A., Guselnikova, O. A., Postnikov, P. S., Elashnikov, R., Ulbrich, P., Rimpelova, S., Švorčík, V., & Lyutakov, O. (2017). Synthesis, characterization, and antimicrobial activity of Near-IR photoactive functionalized gold multibranched nanoparticles. ChemistryOpen, 6(2), 254-260. https://doi.org/10.1002/open.201600159
Kaur, R., & Liu, S. (2016). Antibacterial surface design-Contact kill. Progress in Surface Science, 91(3), 136-153. https://doi.org/10.1016/j.progsurf.2016.09.001
Kawai, F., Kawabata, T., & Oda, M. (2020). Current state and perspectives related to the polyethylene terephthalate hydrolases available for biorecycling. ACS Sustainable Chemistry & Engineering, 8(24), 8894-8908. https://doi.org/10.1021/acssuschemeng.0c01638
Khashan, K. S., Sulaiman, G. M., Abdulameer, F. A., Albukhaty, S., Ibrahem, M. A., Al-Muhimeed, T., & Alobaid, A. A. (2021). Antibacterial activity of tio2 nanoparticles prepared by one-step laser ablation in liquid. Applied Sciences, 11(10), 4623. https://doi.org/10.3390/app11104623
Kudrna, J. J., Nguyen, C., & Vora, G. K. (2022). Intense pulse light therapy for meibomian gland dysfunction. Current Ophthalmology Reports, 10(4), 138-152. https://doi.org/10.1007/s40135-022-00297-1
Li, X., Zhu, D., & Wang, X. (2007). Evaluation on dispersion behavior of the aqueous copper nano-suspensions. Journal of Colloid and Interface Science, 310(2), 456-463. https://doi.org/10.1016/j.jcis.2007.02.067
Liu, L., Ercan, B., Sun, L., Ziemer, K. S., & Webster, T. J. (2016). Understanding the role of polymer surface nanoscale topography on inhibiting bacteria adhesion and growth. ACS Biomaterials Science & Engineering, 2(1), 122-130. https://doi.org/10.1021/acsbiomaterials.5b00431
Madani, M., Omri, K., Fattah, N., Ghorbal, A., & Portier, X. (2017). Influence of silica ratio on structural and optical properties of SiO2/TiO2 nanocomposites prepared by simple solid-phase reaction. Journal of Materials Science: Materials in Electronics, 28(17), 12977-12983. https://doi.org/10.1007/s10854-017-7129-6
Maikranz, E., Spengler, C., Thewes, N., Thewes, A., Nolle, F., Jung, P., Bischoff, M., Santen, L., & Jacobs, K. (2020). Different binding mechanisms of: Staphylococcus aureus to hydrophobic and hydrophilic surfaces. Nanoscale, 12(37), 19267-19275. https://doi.org/10.1039/d0nr03134h
Mallakpour, S., Azadi, E., & Hussain, C. M. (2021). Recent breakthroughs of antibacterial and antiviral protective polymeric materials during COVID-19 pandemic and after pandemic: Coating, packaging, and textile applications. Current Opinion in Colloid & Interface Science, 55, 101480. https://doi.org/10.1016/j.cocis.2021.101480
Mangaraj, S., Yadav, A., Bal, L. M., Dash, S. K., & Mahanti, N. K. (2019). Application of biodegradable polymers in food packaging industry: A comprehensive review. Journal of Packaging Technology and Research, 3(1), 77-96. https://doi.org/10.1007/s41783-018-0049-y
Marković, D., Tseng, H. H., Nunney, T., Radoičić, M., Ilic-Tomic, T., & Radetić, M. (2020). Novel antimicrobial nanocomposite based on polypropylene non-woven fabric, biopolymer alginate and copper oxides nanoparticles. Applied Surface Science, 527, 146829. https://doi.org/10.1016/j.apsusc.2020.146829
Mills, D., Weisman, J., Nicholson, C., Jammalamadaka, U., Tappa, K., & Wilson, C. (2015). Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications. International Journal of Nanomedicine, 10, 357-370. https://doi.org/10.2147/IJN.S74811
Mo, S. D., & Ching, W. Y. (1995). Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Physical Review B, 51(19), 13023-13032. https://doi.org/10.1103/PhysRevB.51.13023
Monteiro, D. R., Gorup, L. F., Takamiya, A. S., Ruvollo-Filho, A. C., Camargo, E. R., & Barbosa, D. B. (2009). The growing importance of materials that prevent microbial adhesion: Antimicrobial effect of medical devices containing silver. International Journal of Antimicrobial Agents, 34(2), 103-110. https://doi.org/10.1016/j.ijantimicag.2009.01.017
Motokura, K., Kashiwame, D., Miyaji, A., & Baba, T. (2012). Copper-catalyzed formic acid synthesis from CO 2 with hydrosilanes and H 2O. Organic Letters, 14(10), 2642-2645. https://doi.org/10.1021/ol301034j
Munster, V. J., Koopmans, M., van Doremalen, N., van Riel, D., & de Wit, E. (2020). A novel coronavirus emerging in China-Key questions for impact assessment. New England Journal of Medicine, 382(8), 692-694. https://doi.org/10.1056/nejmp2000929
Naebe, M., Haque, A. N. M. A., & Haji, A. (2022). Plasma-assisted antimicrobial finishing of textiles: A review. Engineering, 12, 145-163. https://doi.org/10.1016/j.eng.2021.01.011
Nagaraja, A., Jalageri, M. D., Puttaiahgowda, Y. M., Raghava Reddy, K., & Raghu, A. V. (2019). A review on various maleic anhydride antimicrobial polymers. Journal of Microbiological Methods, 163, 105650. https://doi.org/10.1016/j.mimet.2019.105650
Nakata, K., & Fujishima, A. (2012). TiO 2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology, C: Photochemistry Reviews, 13(3), 169-189. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
Preedy, E., Perni, S., Nipiĉ, D., Bohinc, K., & Prokopovich, P. (2014). Surface roughness mediated adhesion forces between borosilicate glass and gram-positive bacteria. Langmuir, 30(31), 9466-9476. https://doi.org/10.1021/la501711t
Roe, D., Karandikar, B., Bonn-Savage, N., Gibbins, B., & Roullet, J. B. (2008). Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. Journal of Antimicrobial Chemotherapy, 61(4), 869-876. https://doi.org/10.1093/jac/dkn034
Roy, A., Parida, S. P., & Bhatia, V. (2020). Role of disinfection and hand hygiene: A COVID-19 perspective. International Journal Of Community Medicine And Public Health, 7(7), 2845. https://doi.org/10.18203/2394-6040.ijcmph20203025
Ryu, J., Kim, H. S., & Hahn, H. T. (2011). Reactive sintering of copper nanoparticles using intense pulsed light for printed electronics. Journal of Electronic Materials, 40(1), 42-50. https://doi.org/10.1007/s11664-010-1384-0
Sepehrnia, N., Gorakifard, M., Hallett, P. D., Hajabbasi, M. A., Shokri, N., & Coyne, M. (2023). Contrasting transport and fate of hydrophilic and hydrophobic bacteria in wettable and water-repellent porous media: Straining or attachment. Colloids and Surfaces B: Biointerfaces, 228(February), 113433. https://doi.org/10.1016/j.colsurfb.2023.113433
Sharma, S., Jaimes-Lizcano, Y. A., McLay, R. B., Cirino, P. C., & Conrad, J. C. (2016). Subnanometric roughness affects the deposition and mobile adhesion of Escherichia coli on silanized glass surfaces. Langmuir, 32(21), 5422-5433.
Shlar, I., Droby, S., & Rodov, V. (2018). Antimicrobial coatings on polyethylene terephthalate based on curcumin/cyclodextrin complex embedded in a multilayer polyelectrolyte architecture. Colloids and Surfaces B: Biointerfaces, 164, 379-387. https://doi.org/10.1016/j.colsurfb.2018.02.008
Thuy, V. T. T., Hao, L. T., Jeon, H., Koo, J. M., Park, J., Lee, E. S., Hwang, S. Y., Choi, S., Park, J., & Oh, D. X. (2021). Sustainable, self-cleaning, transparent, and moisture/oxygen-barrier coating films for food packaging. Green Chemistry, 23(7), 2658-2667. https://doi.org/10.1039/d0gc03647a
Tiwari, M., Narayanan, K., Thakar, M. B., Jagani, H. V., & Venkata Rao, J. (2014). Biosynthesis and wound healing activity of copper nanoparticles. IET Nanobiotechnology, 8(4), 230-237. https://doi.org/10.1049/iet-nbt.2013.0052
Truong, V. K., Lapovok, R., Estrin, Y. S., Rundell, S., Wang, J. Y., Fluke, C. J., Crawford, R. J., & Ivanova, E. P. (2010). The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials, 31(13), 3674-3683. https://doi.org/10.1016/j.biomaterials.2010.01.071
Wang, C., Oh, S., Lee, H. A., Kang, J., Jeong, K. J., Kang, S. W., Hwang, D. Y., & Lee, J. (2017). In vivo feasibility test using transparent carbon nanotube-coated polydimethylsiloxane sheet at brain tissue and sciatic nerve. Journal of Biomedical Materials Research. Part A, 105(6), 1736-1745. https://doi.org/10.1002/jbm.a.36001
Wang, P., Wang, M., Liu, F., Ding, S., Wang, X., Du, G., Liu, J., Apel, P., Kluth, P., Trautmann, C., & Wang, Y. (2018). Ultrafast ion sieving using nanoporous polymeric membranes. Nature Communications, 9(1), 569. https://doi.org/10.1038/s41467-018-02941-6
Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., & Von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science & Technology, 46(4), 2242-2250. https://doi.org/10.1021/es204168d
Wu, X., Huang, Y. Y., Kushida, Y., Bhayana, B., & Hamblin, M. R. (2016). Broad-spectrum antimicrobial photocatalysis mediated by titanium dioxide and UVA is potentiated by addition of bromide ion via formation of hypobromite. Free Radical Biology and Medicine, 95, 74-81. https://doi.org/10.1016/j.freeradbiomed.2016.03.012
Yang, W., Li, J., Zhou, P., Zhu, L., & Tang, H. (2017). Superhydrophobic copper coating: Switchable wettability, on-demand oil-water separation, and antifouling. Chemical Engineering Journal, 327, 849-854. https://doi.org/10.1016/j.cej.2017.06.159
Yue, C., Zhang, C., Alfranca, G., Yang, Y., Jiang, X., Yang, Y., Pan, F., Fuente, J. M., & Cui, D. (2016). Near-infrared light triggered ros-activated theranostic platform based on ce6-cpt-ucnps for simultaneous fluorescence imaging and chemo-photodynamic combined therapy. Theranostics, 6(4), 456-469. https://doi.org/10.7150/thno.14101
Zhao, C., Deng, B., Chen, G., Lei, B., Hua, H., Peng, H., & Yan, Z. (2016). Large-area chemical vapor deposition-grown monolayer graphene-wrapped silver nanowires for broad-spectrum and robust antimicrobial coating. Nano Research, 9(4), 963-973. https://doi.org/10.1007/s12274-016-0984-2

Auteurs

Jaemyung Shin (J)

Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.

Robin Jeong (R)

Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.

Hitendra Kumar (H)

Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.
Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

Chaneel Park (C)

Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.

Simon S Park (SS)

Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.

Keekyoung Kim (K)

Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.
Department of Mechanical and Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada.

Classifications MeSH