Adopting artificial intelligence in cardiovascular medicine: a scoping review.
Artificial intelligence
Cardiovascular medicine
Deep learning
Machine learning
Journal
Hypertension research : official journal of the Japanese Society of Hypertension
ISSN: 1348-4214
Titre abrégé: Hypertens Res
Pays: England
ID NLM: 9307690
Informations de publication
Date de publication:
31 Oct 2023
31 Oct 2023
Historique:
received:
01
04
2023
accepted:
26
09
2023
revised:
03
09
2023
medline:
1
11
2023
pubmed:
1
11
2023
entrez:
1
11
2023
Statut:
aheadofprint
Résumé
Recent years have witnessed significant transformations in cardiovascular medicine, driven by the rapid evolution of artificial intelligence (AI). This scoping review was conducted to capture the breadth of AI applications within cardiovascular science. Employing a structured approach, we sourced relevant articles from PubMed, with an emphasis on journals encompassing general cardiology and digital medicine. We applied filters to highlight cardiovascular articles published in journals focusing on general internal medicine, cardiology and digital medicine, thereby identifying the prevailing trends in the field. Following a comprehensive full-text screening, a total of 140 studies were identified. Over the preceding 5 years, cardiovascular medicine's interplay with AI has seen an over tenfold augmentation. This expansive growth encompasses multiple cardiovascular subspecialties, including but not limited to, general cardiology, ischemic heart disease, heart failure, and arrhythmia. Deep learning emerged as the predominant methodology. The majority of AI endeavors in this domain have been channeled toward enhancing diagnostic and prognostic capabilities, utilizing resources such as hospital datasets, electrocardiograms, and echocardiography. A significant uptrend was observed in AI's application for omics data analysis. However, a clear gap persists in AI's full-scale integration into the clinical decision-making framework. AI, particularly deep learning, has demonstrated robust applications across cardiovascular subspecialties, indicating its transformative potential in this field. As we continue on this trajectory, ensuring the alignment of technological progress with medical ethics becomes crucial. The abundant digital health data today further accentuates the need for meticulous systematic reviews, tailoring them to each cardiovascular subspecialty.
Identifiants
pubmed: 37907600
doi: 10.1038/s41440-023-01469-7
pii: 10.1038/s41440-023-01469-7
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to The Japanese Society of Hypertension.
Références
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.
pubmed: 26017442
doi: 10.1038/nature14539
Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016;529:484–9.
pubmed: 26819042
doi: 10.1038/nature16961
Silver D, Hubert T, Schrittwieser J, Antonoglou I, Lai M, Guez A, et al. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science. 2018;362:1140–4.
pubmed: 30523106
doi: 10.1126/science.aar6404
Lake BM, Ullman TD, Tenenbaum JB, Gershman SJ. Building machines that learn and think like people. Behav Brain Sci. 2017;40:e253.
pubmed: 27881212
doi: 10.1017/S0140525X16001837
Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18:500–10.
pubmed: 29777175
pmcid: 6268174
doi: 10.1038/s41568-018-0016-5
Cannesson M, Tanabe M, Suffoletto MS, McNamara DM, Madan S, Lacomis JM, et al. A novel two-dimensional echocardiographic image analysis system using artificial intelligence-learned pattern recognition for rapid automated ejection fraction. J Am Coll Cardiol. 2007;49:217–26.
pubmed: 17222733
doi: 10.1016/j.jacc.2006.08.045
Narula S, Shameer K, Salem Omar AM, Dudley JT, Sengupta PP. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol. 2016;68:2287–95.
pubmed: 27884247
doi: 10.1016/j.jacc.2016.08.062
Blecker S, Katz SD, Horwitz LI, Kuperman G, Park H, Gold A, et al. Comparison of approaches for heart failure case identification from electronic health record data. JAMA Cardiol. 2016;1:1014–20.
pubmed: 27706470
pmcid: 5289894
doi: 10.1001/jamacardio.2016.3236
Ambale-Venkatesh B, Yang X, Wu CO, Liu K, Hundley WG, McClelland R, et al. Cardiovascular event prediction by machine learning: the multi-ethnic study of atherosclerosis. Circ Res. 2017;121:1092–101.
pubmed: 28794054
pmcid: 5640485
doi: 10.1161/CIRCRESAHA.117.311312
Ong MS, Mullen MP, Austin ED, Szolovits P, Natter MD, Geva A, et al. Learning a comorbidity-driven taxonomy of pediatric pulmonary hypertension. Circ Res. 2017;121:341–53.
pubmed: 28611076
pmcid: 5559726
doi: 10.1161/CIRCRESAHA.117.310804
McConnell MV, Shcherbina A, Pavlovic A, Homburger JR, Goldfeder RL, Waggot D, et al. Feasibility of obtaining measures of lifestyle from a smartphone app: the Myheart Counts Cardiovascular Health Study. JAMA Cardiol. 2017;2:67–76.
pubmed: 27973671
doi: 10.1001/jamacardio.2016.4395
Frizzell JD, Liang L, Schulte PJ, Yancy CW, Heidenreich PA, Hernandez AF, et al. Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure: comparison of machine learning and other statistical approaches. JAMA Cardiol. 2017;2:204–9.
pubmed: 27784047
doi: 10.1001/jamacardio.2016.3956
Motwani M, Dey D, Berman DS, Germano G, Achenbach S, Al-Mallah MH, et al. Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J. 2017;38:500–7.
pubmed: 27252451
Zhang J, Gajjala S, Agrawal P, Tison GH, Hallock LA, Beussink-Nelson L, et al. Fully automated echocardiogram interpretation in clinical practice. Circulation. 2018;138:1623–35.
pubmed: 30354459
pmcid: 6200386
doi: 10.1161/CIRCULATIONAHA.118.034338
Poh MZ, Poh YC, Chan PH, Wong CK, Pun L, Leung WW, et al. Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms. Heart. 2018;104:1921–8.
pubmed: 29853485
doi: 10.1136/heartjnl-2018-313147
Sengupta PP, Kulkarni H, Narula J. Prediction of abnormal myocardial relaxation from signal processed surface ECG. J Am Coll Cardiol. 2018;71:1650–60.
pubmed: 29650121
doi: 10.1016/j.jacc.2018.02.024
Madani A, Ong JR, Tibrewal A, Mofrad MRK. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. NPJ Digital Med. 2018;1:59.
doi: 10.1038/s41746-018-0065-x
Williams SA, Kivimaki M, Langenberg C, Hingorani AD, Casas JP, Bouchard C, et al. Plasma protein patterns as comprehensive indicators of health. Nat Med. 2019;25:1851–7.
pubmed: 31792462
pmcid: 6922049
doi: 10.1038/s41591-019-0665-2
Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019;394:861–7.
pubmed: 31378392
doi: 10.1016/S0140-6736(19)31721-0
Galloway CD, Valys AV, Shreibati JB, Treiman DL, Petterson FL, Gundotra VP, et al. Development and validation of a deep-learning model to screen for hyperkalemia from the electrocardiogram. JAMA Cardiol. 2019;4:428–36.
pubmed: 30942845
pmcid: 6537816
doi: 10.1001/jamacardio.2019.0640
Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med. 2019;25:65–9.
pubmed: 30617320
pmcid: 6784839
doi: 10.1038/s41591-018-0268-3
Attia ZI, Kapa S, Lopez-Jimenez F, McKie PM, Ladewig DJ, Satam G, et al. Screening for cardiac contractile dysfunction using an artificial intelligence-enabled electrocardiogram. Nat Med. 2019;25:70–4.
pubmed: 30617318
doi: 10.1038/s41591-018-0240-2
Green EM, van Mourik R, Wolfus C, Heitner SB, Dur O, Semigran MJ. Machine learning detection of obstructive hypertrophic cardiomyopathy using a wearable biosensor. NPJ Digital Med. 2019;2:57.
doi: 10.1038/s41746-019-0130-0
Kagiyama N, Piccirilli M, Yanamala N, Shrestha S, Farjo PD, Casaclang-Verzosa G, et al. Machine learning assessment of left ventricular diastolic function based on electrocardiographic features. J Am Coll Cardiol. 2020;76:930–41.
pubmed: 32819467
doi: 10.1016/j.jacc.2020.06.061
Ko WY, Siontis KC, Attia ZI, Carter RE, Kapa S, Ommen SR, et al. Detection of hypertrophic cardiomyopathy using a convolutional neural network-enabled electrocardiogram. J Am Coll Cardiol. 2020;75:722–33.
pubmed: 32081280
doi: 10.1016/j.jacc.2019.12.030
Commandeur F, Slomka PJ, Goeller M, Chen X, Cadet S, Razipour A, et al. Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study. Cardiovasc Res. 2020;116:2216–25.
pubmed: 31853543
doi: 10.1093/cvr/cvz321
Al’Aref SJ, Maliakal G, Singh G, van Rosendael AR, Ma X, Xu Z, et al. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry. Eur Heart J. 2020;41:359–67.
pubmed: 31513271
doi: 10.1093/eurheartj/ehz565
Al-Zaiti S, Besomi L, Bouzid Z, Faramand Z, Frisch S, Martin-Gill C, et al. Machine learning-based prediction of acute coronary syndrome using only the pre-hospital 12-lead electrocardiogram. Nat Commun. 2020;11:3966.
pubmed: 32769990
pmcid: 7414145
doi: 10.1038/s41467-020-17804-2
Raghunath S, Ulloa Cerna AE, Jing L, vanMaanen DP, Stough J, Hartzel DN, et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nat Med. 2020;26:886–91.
pubmed: 32393799
doi: 10.1038/s41591-020-0870-z
Chirinos JA, Orlenko A, Zhao L, Basso MD, Cvijic ME, Li Z, et al. Multiple plasma biomarkers for risk stratification in patients with heart failure and preserved ejection fraction. J Am Coll Cardiol. 2020;75:1281–95.
pubmed: 32192654
pmcid: 7147356
doi: 10.1016/j.jacc.2019.12.069
Olin JW, Di Narzo AF, d’Escamard V, Kadian-Dodov D, Cheng H, Georges A, et al. A plasma proteogenomic signature for fibromuscular dysplasia. Cardiovasc Res. 2020;116:63–77.
pubmed: 31424497
doi: 10.1093/cvr/cvz219
Farjo PD, Yanamala N, Kagiyama N, Patel HB, Casaclang-Verzosa G, Nezarat N, et al. Prediction of coronary artery calcium scoring from surface electrocardiogram in atherosclerotic cardiovascular disease: a pilot study. Eur Heart J Digit Health. 2020;1:51–61.
pubmed: 37056293
pmcid: 10087019
doi: 10.1093/ehjdh/ztaa008
Ward A, Sarraju A, Chung S, Li J, Harrington R, Heidenreich P, et al. Machine learning and atherosclerotic cardiovascular disease risk prediction in a multi-ethnic population. NPJ Digital Med. 2020;3:125.
doi: 10.1038/s41746-020-00331-1
Torres-Soto J, Ashley EA. Multi-task deep learning for cardiac rhythm detection in wearable devices. NPJ Digital Med. 2020;3:116.
doi: 10.1038/s41746-020-00320-4
Pickhardt PJ, Graffy PM, Zea R, Lee SJ, Liu J, Sandfort V, et al. Automated CT biomarkers for opportunistic prediction of future cardiovascular events and mortality in an asymptomatic screening population: a retrospective cohort study. Lancet Digit Health. 2020;2:e192–200.
pubmed: 32864598
pmcid: 7454161
doi: 10.1016/S2589-7500(20)30025-X
Huang SC, Kothari T, Banerjee I, Chute C, Ball RL, Borus N, et al. PENet-a scalable deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT imaging. NPJ Digital Med. 2020;3:61.
doi: 10.1038/s41746-020-0266-y
Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP, et al. Video-based AI for beat-to-beat assessment of cardiac function. Nature. 2020;580:252–6.
pubmed: 32269341
pmcid: 8979576
doi: 10.1038/s41586-020-2145-8
Hughes JW, Olgin JE, Avram R, Abreau SA, Sittler T, Radia K, et al. Performance of a convolutional neural network and explainability technique for 12-lead electrocardiogram interpretation. JAMA Cardiol. 2021;6:1285–95.
pubmed: 34347007
pmcid: 8340011
doi: 10.1001/jamacardio.2021.2746
Rusin CG, Acosta SI, Vu EL, Ahmed M, Brady KM, Penny DJ. Automated prediction of cardiorespiratory deterioration in patients with single ventricle. J Am Coll Cardiol. 2021;77:3184–92.
pubmed: 34167643
doi: 10.1016/j.jacc.2021.04.072
Yao X, Rushlow DR, Inselman JW, McCoy RG, Thacher TD, Behnken EM, et al. Artificial intelligence-enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nat Med. 2021;27:815–9.
pubmed: 33958795
doi: 10.1038/s41591-021-01335-4
Oikonomou EK, Van Dijk D, Parise H, Suchard MA, de Lemos J, Antoniades C, et al. A phenomapping-derived tool to personalize the selection of anatomical vs. functional testing in evaluating chest pain (ASSIST). Eur Heart J. 2021;42:2536–48.
pubmed: 33881513
pmcid: 8488385
doi: 10.1093/eurheartj/ehab223
Segar MW, Jaeger BC, Patel KV, Nambi V, Ndumele CE, Correa A, et al. Development and validation of machine learning-based race-specific models to predict 10-year risk of heart failure: a multicohort analysis. Circulation. 2021;143:2370–83.
pubmed: 33845593
pmcid: 9976274
doi: 10.1161/CIRCULATIONAHA.120.053134
Cohen-Shelly M, Attia ZI, Friedman PA, Ito S, Essayagh BA, Ko WY, et al. Electrocardiogram screening for aortic valve stenosis using artificial intelligence. Eur Heart J. 2021;42:2885–96.
pubmed: 33748852
doi: 10.1093/eurheartj/ehab153
Khera R, Haimovich J, Hurley NC, McNamara R, Spertus JA, Desai N, et al. Use of machine learning models to predict death after acute myocardial infarction. JAMA Cardiol. 2021;6:633–41.
pubmed: 33688915
doi: 10.1001/jamacardio.2021.0122
Bos JM, Attia ZI, Albert DE, Noseworthy PA, Friedman PA, Ackerman MJ. Use of artificial intelligence and deep neural networks in evaluation of patients with electrocardiographically concealed long QT syndrome from the surface 12-lead electrocardiogram. JAMA Cardiol. 2021;6:532–8.
pubmed: 33566059
doi: 10.1001/jamacardio.2020.7422
Giudicessi JR, Schram M, Bos JM, Galloway CD, Shreibati JB, Johnson PW, et al. Artificial intelligence-enabled assessment of the heart rate corrected QT interval using a mobile electrocardiogram device. Circulation. 2021;143:1274–86.
pubmed: 33517677
doi: 10.1161/CIRCULATIONAHA.120.050231
Wittenbecher C, Eichelmann F, Toledo E, Guasch-Ferré M, Ruiz-Canela M, Li J, et al. Lipid profiles and heart failure risk: results from two prospective studies. Circ Res. 2021;128:309–20.
pubmed: 33272114
doi: 10.1161/CIRCRESAHA.120.317883
Rogers AJ, Selvalingam A, Alhusseini MI, Krummen DE, Corrado C, Abuzaid F, et al. Machine learned cellular phenotypes in cardiomyopathy predict sudden death. Circ Res. 2021;128:172–84.
pubmed: 33167779
doi: 10.1161/CIRCRESAHA.120.317345
Shad R, Quach N, Fong R, Kasinpila P, Bowles C, Castro M, et al. Predicting post-operative right ventricular failure using video-based deep learning. Nat Commun. 2021;12:5192.
pubmed: 34465780
pmcid: 8408163
doi: 10.1038/s41467-021-25503-9
Goto S, Mahara K, Beussink-Nelson L, Ikura H, Katsumata Y, Endo J, et al. Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms. Nat Commun. 2021;12:2726.
pubmed: 33976142
pmcid: 8113484
doi: 10.1038/s41467-021-22877-8
Zeleznik R, Foldyna B, Eslami P, Weiss J, Alexander I, Taron J, et al. Deep convolutional neural networks to predict cardiovascular risk from computed tomography. Nat Commun. 2021;12:715.
pubmed: 33514711
pmcid: 7846726
doi: 10.1038/s41467-021-20966-2
Chao H, Shan H, Homayounieh F, Singh R, Khera RD, Guo H, et al. Deep learning predicts cardiovascular disease risks from lung cancer screening low dose computed tomography. Nat Commun. 2021;12:2963.
pubmed: 34017001
pmcid: 8137697
doi: 10.1038/s41467-021-23235-4
Peyster EG, Arabyarmohammadi S, Janowczyk A, Azarianpour-Esfahani S, Sekulic M, Cassol C, et al. An automated computational image analysis pipeline for histological grading of cardiac allograft rejection. Eur Heart J. 2021;42:2356–69.
pubmed: 33982079
pmcid: 8216729
doi: 10.1093/eurheartj/ehab241
Huda A, Castaño A, Niyogi A, Schumacher J, Stewart M, Bruno M, et al. A machine learning model for identifying patients at risk for wild-type transthyretin amyloid cardiomyopathy. Nat Commun. 2021;12:2725.
pubmed: 33976166
pmcid: 8113237
doi: 10.1038/s41467-021-22876-9
Raghunath S, Pfeifer JM, Ulloa-Cerna AE, Nemani A, Carbonati T, Jing L, et al. Deep neural networks can predict new-onset atrial fibrillation from the 12-lead ECG and help identify those at risk of atrial fibrillation-related stroke. Circulation. 2021;143:1287–98.
pubmed: 33588584
pmcid: 7996054
doi: 10.1161/CIRCULATIONAHA.120.047829
Somani SS, Honarvar H, Narula S, Landi I, Lee S, Khachatoorian Y, et al. Development of a machine learning model using electrocardiogram signals to improve acute pulmonary embolism screening. Eur Heart J Digit Health. 2021;3:56–66.
pubmed: 35355847
pmcid: 8946569
doi: 10.1093/ehjdh/ztab101
Akbilgic O, Butler L, Karabayir I, Chang PP, Kitzman DW, Alonso A, et al. ECG-AI: electrocardiographic artificial intelligence model for prediction of heart failure. Eur Heart J Digit Health. 2021;2:626–34.
pubmed: 34993487
pmcid: 8715759
doi: 10.1093/ehjdh/ztab080
Adedinsewo DA, Johnson PW, Douglass EJ, Attia IZ, Phillips SD, Goswami RM, et al. Detecting cardiomyopathies in pregnancy and the postpartum period with an electrocardiogram-based deep learning model. Eur Heart J Digit Health. 2021;2:586–96.
pubmed: 34993486
pmcid: 8715757
doi: 10.1093/ehjdh/ztab078
Ahmad A, Shelly-Cohen M, Corban MT, Murphree DH Jr, Toya T, Sara JD, et al. Machine learning aids clinical decision-making in patients presenting with angina and non-obstructive coronary artery disease. Eur Heart J Digit Health. 2021;2:597–605.
pubmed: 36713103
pmcid: 9707870
doi: 10.1093/ehjdh/ztab084
Chen Z, Rigolli M, Vigneault DM, Kligerman S, Hahn L, Narezkina A, et al. Automated cardiac volume assessment and cardiac long- and short-axis imaging plane prediction from electrocardiogram-gated computed tomography volumes enabled by deep learning. Eur Heart J Digit Health. 2021;2:311–22.
pubmed: 34223176
pmcid: 8242184
doi: 10.1093/ehjdh/ztab033
Eng D, Chute C, Khandwala N, Rajpurkar P, Long J, Shleifer S, et al. Automated coronary calcium scoring using deep learning with multicenter external validation. NPJ Digital Med. 2021;4:88.
doi: 10.1038/s41746-021-00460-1
Forrest IS, Petrazzini BO, Duffy Á, Park JK, Marquez-Luna C, Jordan DM, et al. Machine learning-based marker for coronary artery disease: derivation and validation in two longitudinal cohorts. Lancet. 2023;401:215–25.
pubmed: 36563696
doi: 10.1016/S0140-6736(22)02079-7
Attia ZI, Harmon DM, Dugan J, Manka L, Lopez-Jimenez F, Lerman A, et al. Prospective evaluation of smartwatch-enabled detection of left ventricular dysfunction. Nat Med. 2022;28:2497–503.
pubmed: 36376461
pmcid: 9805528
doi: 10.1038/s41591-022-02053-1
Inoue K, Seeman TE, Horwich T, Budoff MJ, Watson KE. Heterogeneity in the association between the presence of coronary artery calcium and cardiovascular events: a machine-learning approach in the MESA study. Circulation. 2023;147:132–41.
pubmed: 36314118
doi: 10.1161/CIRCULATIONAHA.122.062626
Noseworthy PA, Attia ZI, Behnken EM, Giblon RE, Bews KA, Liu S, et al. Artificial intelligence-guided screening for atrial fibrillation using electrocardiogram during sinus rhythm: a prospective non-randomised interventional trial. Lancet. 2022;400:1206–12.
pubmed: 36179758
doi: 10.1016/S0140-6736(22)01637-3
Bhattacharyya S, Duan J, Vela RJ, Bhakta M, Bajona P, Mammen PPA, et al. Accurate classification of cardiomyopathy diagnosis by chromatin accessibility. Circulation. 2022;146:878–81.
pubmed: 36095061
pmcid: 9475804
doi: 10.1161/CIRCULATIONAHA.122.059659
Elias P, Poterucha TJ, Rajaram V, Moller LM, Rodriguez V, Bhave S, et al. Deep learning electrocardiographic analysis for detection of left-sided valvular heart disease. J Am Coll Cardiol. 2022;80:613–26.
pubmed: 35926935
doi: 10.1016/j.jacc.2022.05.029
Nekoui M, Pirruccello JP, Di Achille P, Choi SH, Friedman SN, Nauffal V, et al. Spatially distinct genetic determinants of aortic dimensions influence risks of aneurysm and stenosis. J Am Coll Cardiol. 2022;80:486–97.
pubmed: 35902171
doi: 10.1016/j.jacc.2022.05.024
Segar MW, Hall JL, Jhund PS, Powell-Wiley TM, Morris AA, Kao D, et al. Machine learning-based models incorporating social determinants of health vs traditional models for predicting in-hospital mortality in patients with heart failure. JAMA Cardiol. 2022;7:844–54.
pubmed: 35793094
pmcid: 9260645
doi: 10.1001/jamacardio.2022.1900
Liang LW, Raita Y, Hasegawa K, Fifer MA, Maurer MS, Reilly MP, et al. Proteomics profiling reveals a distinct high-risk molecular subtype of hypertrophic cardiomyopathy. Heart. 2022;108:1807–14.
pubmed: 35351822
doi: 10.1136/heartjnl-2021-320729
Lipkova J, Chen TY, Lu MY, Chen RJ, Shady M, Williams M, et al. Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies. Nat Med. 2022;28:575–82.
pubmed: 35314822
pmcid: 9353336
doi: 10.1038/s41591-022-01709-2
Duffy G, Cheng PP, Yuan N, He B, Kwan AC, Shun-Shin MJ, et al. High-throughput precision phenotyping of left ventricular hypertrophy with cardiovascular deep learning. JAMA Cardiol. 2022;7:386–95.
pubmed: 35195663
pmcid: 9008505
doi: 10.1001/jamacardio.2021.6059
Li C, Qu L, Matz AJ, Murphy PA, Liu Y, Manichaikul AW, et al. AtheroSpectrum reveals novel macrophage foam cell gene signatures associated with atherosclerotic cardiovascular disease risk. Circulation. 2022;145:206–18.
pubmed: 34913723
doi: 10.1161/CIRCULATIONAHA.121.054285
Khurshid S, Friedman S, Reeder C, Di Achille P, Diamant N, Singh P, et al. ECG-based deep learning and clinical risk factors to predict atrial fibrillation. Circulation. 2022;145:122–33.
pubmed: 34743566
doi: 10.1161/CIRCULATIONAHA.121.057480
Rios R, Miller RJH, Hu LH, Otaki Y, Singh A, Diniz M, et al. Determining a minimum set of variables for machine learning cardiovascular event prediction: results from REFINE SPECT registry. Cardiovasc Res. 2022;118:2152–64.
pubmed: 34259870
doi: 10.1093/cvr/cvab236
Sangha V, Mortazavi BJ, Haimovich AD, Ribeiro AH, Brandt CA, Jacoby DL, et al. Automated multilabel diagnosis on electrocardiographic images and signals. Nat Commun. 2022;13:1583.
pubmed: 35332137
pmcid: 8948243
doi: 10.1038/s41467-022-29153-3
Ulloa-Cerna AE, Jing L, Pfeifer JM, Raghunath S, Ruhl JA, Rocha DB, et al. rECHOmmend: an ECG-based machine learning approach for identifying patients at increased risk of undiagnosed structural heart disease detectable by echocardiography. Circulation. 2022;146:36–47.
pubmed: 35533093
pmcid: 9241668
doi: 10.1161/CIRCULATIONAHA.121.057869
Peyster EG, Janowczyk A, Swamidoss A, Kethireddy S, Feldman MD, Margulies KB. Computational analysis of routine biopsies improves diagnosis and prediction of cardiac allograft vasculopathy. Circulation. 2022;145:1563–77.
pubmed: 35405081
pmcid: 9133227
doi: 10.1161/CIRCULATIONAHA.121.058459
Petrazzini BO, Chaudhary K, Márquez-Luna C, Forrest IS, Rocheleau G, Cho J, et al. Coronary risk estimation based on clinical data in electronic health records. J Am Coll Cardiol. 2022;79:1155–66.
pubmed: 35331410
pmcid: 8956801
doi: 10.1016/j.jacc.2022.01.021
Tison GH, Siontis KC, Abreau S, Attia Z, Agarwal P, Balasubramanyam A, et al. Assessment of disease status and treatment response with artificial intelligence-enhanced electrocardiography in obstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2022;79:1032–4.
pubmed: 35272798
pmcid: 10101773
doi: 10.1016/j.jacc.2022.01.005
Singh JP, Fontanarava J, de Massé G, Carbonati T, Li J, Henry C, et al. Short-term prediction of atrial fibrillation from ambulatory monitoring ECG using a deep neural network. Eur Heart J Digit Health. 2022;3:208–17.
pubmed: 36713004
pmcid: 9708000
doi: 10.1093/ehjdh/ztac014
Soto JT, Weston Hughes J, Sanchez PA, Perez M, Ouyang D, Ashley EA. Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy. Eur Heart J Digit Health. 2022;3:380–9.
pubmed: 36712167
pmcid: 9707995
doi: 10.1093/ehjdh/ztac033
Attia ZI, Dugan J, Rideout A, Maidens JN, Venkatraman S, Guo L, et al. Automated detection of low ejection fraction from a one-lead electrocardiogram: application of an AI algorithm to an electrocardiogram-enabled Digital Stethoscope. Eur Heart J Digit Health. 2022;3:373–9.
pubmed: 36712160
pmcid: 9708035
doi: 10.1093/ehjdh/ztac030
Yagi R, Goto S, Katsumata Y, MacRae CA, Deo RC. Importance of external validation and subgroup analysis of artificial intelligence in the detection of low ejection fraction from electrocardiograms. Eur Heart J Digit Health. 2022;3:654–7.
pubmed: 36710903
pmcid: 9779862
doi: 10.1093/ehjdh/ztac065
Heindel P, Dey T, Feliz JD, Hentschel DM, Bhatt DL, Al-Omran M, et al. Predicting radiocephalic arteriovenous fistula success with machine learning. NPJ Digital Med. 2022;5:160.
doi: 10.1038/s41746-022-00710-w
Lin A, Manral N, McElhinney P, Killekar A, Matsumoto H, Kwiecinski J, et al. Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study. Lancet Digit Health. 2022;4:e256–65.
pubmed: 35337643
pmcid: 9047317
doi: 10.1016/S2589-7500(22)00022-X
Kurz DJ, Bernstein A, Hunt K, Radovanovic D, Erne P, Siudak Z, et al. Simple point-of-care risk stratification in acute coronary syndromes: the AMIS model. Heart. 2009;95:662–8.
pubmed: 19066189
doi: 10.1136/hrt.2008.145904
Ammirati E, Cannistraci CV, Cristell NA, Vecchio V, Palini AG, Tornvall P, et al. Identification and predictive value of interleukin-6+ interleukin-10+ and interleukin-6- interleukin-10+ cytokine patterns in ST-elevation acute myocardial infarction. Circ Res. 2012;111:1336–48.
pubmed: 22931953
doi: 10.1161/CIRCRESAHA.111.262477
Oikonomou EK, Williams MC, Kotanidis CP, Desai MY, Marwan M, Antonopoulos AS, et al. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography. Eur Heart J. 2019;40:3529–43.
pubmed: 31504423
pmcid: 6855141
doi: 10.1093/eurheartj/ehz592
Diller GP, Kempny A, Babu-Narayan SV, Henrichs M, Brida M, Uebing A, et al. Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: data from a single tertiary centre including 10 019 patients. Eur Heart J. 2019;40:1069–77.
pubmed: 30689812
pmcid: 6441851
doi: 10.1093/eurheartj/ehy915
Chua W, Purmah Y, Cardoso VR, Gkoutos GV, Tull SP, Neculau G, et al. Data-driven discovery and validation of circulating blood-based biomarkers associated with prevalent atrial fibrillation. Eur Heart J. 2019;40:1268–76.
pubmed: 30615112
pmcid: 6475521
doi: 10.1093/eurheartj/ehy815
Rawshani A, Rawshani A, Sattar N, Franzén S, McGuire DK, Eliasson B, et al. Relative prognostic importance and optimal levels of risk factors for mortality and cardiovascular outcomes in type 1 diabetes mellitus. Circulation. 2019;139:1900–12.
pubmed: 30798638
doi: 10.1161/CIRCULATIONAHA.118.037454
Li Y, Sperrin M, Ashcroft DM, van Staa TP. Consistency of variety of machine learning and statistical models in predicting clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar. BMJ. 2020;371:m3919.
pubmed: 33148619
pmcid: 7610202
doi: 10.1136/bmj.m3919
Sánchez-Cabo F, Rossello X, Fuster V, Benito F, Manzano JP, Silla JC, et al. Machine learning improves cardiovascular risk definition for young, asymptomatic individuals. J Am Coll Cardiol. 2020;76:1674–85.
pubmed: 33004133
doi: 10.1016/j.jacc.2020.08.017
Hoogeveen RM, Pereira JPB, Nurmohamed NS, Zampoleri V, Bom MJ, Baragetti A, et al. Improved cardiovascular risk prediction using targeted plasma proteomics in primary prevention. Eur Heart J. 2020;41:3998–4007.
pubmed: 32808014
pmcid: 7672529
doi: 10.1093/eurheartj/ehaa648
Verhaar BJH, Collard D, Prodan A, Levels JHM, Zwinderman AH, Bäckhed F, et al. Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: the HELIUS study. Eur Heart J. 2020;41:4259–67.
pubmed: 32869053
pmcid: 7724641
doi: 10.1093/eurheartj/ehaa704
Tokodi M, Schwertner WR, Kovács A, Tősér Z, Staub L, Sárkány A, et al. Machine learning-based mortality prediction of patients undergoing cardiac resynchronization therapy: the SEMMELWEIS-CRT score. Eur Heart J. 2020;41:1747–56.
pubmed: 31923316
pmcid: 7205468
doi: 10.1093/eurheartj/ehz902
Diller GP, Orwat S, Vahle J, Bauer UMM, Urban A, Sarikouch S, et al. Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis. Heart. 2020;106:1007–14.
pubmed: 32161041
doi: 10.1136/heartjnl-2019-315962
Galli V, Loncaric F, Rocatello G, Astudillo P, Sanchis L, Regueiro A, et al. Towards patient-specific prediction of conduction abnormalities induced by transcatheter aortic valve implantation: a combined mechanistic modelling and machine learning approach. Eur Heart J Digit Health. 2021;2:606–15.
pubmed: 36713106
pmcid: 9708019
doi: 10.1093/ehjdh/ztab063
Kainz B, Heinrich MP, Makropoulos A, Oppenheimer J, Mandegaran R, Sankar S, et al. Non-invasive diagnosis of deep vein thrombosis from ultrasound imaging with machine learning. NPJ Digital Med. 2021;4:137.
doi: 10.1038/s41746-021-00503-7
Dolezalova N, Reed AB, Despotovic A, Obika BD, Morelli D, Aral M, et al. Development of an accessible 10-year Digital CArdioVAscular (DiCAVA) risk assessment: a UK Biobank study. Eur Heart J Digit Health. 2021;2:528–38.
pubmed: 36713604
pmcid: 9707906
doi: 10.1093/ehjdh/ztab057
Augusto JB, Davies RH, Bhuva AN, Knott KD, Seraphim A, Alfarih M, et al. Diagnosis and risk stratification in hypertrophic cardiomyopathy using machine learning wall thickness measurement: a comparison with human test-retest performance. Lancet Digit Health. 2021;3:e20–8.
pubmed: 33735065
doi: 10.1016/S2589-7500(20)30267-3
Giang KW, Helgadottir S, Dellborg M, Volpe G, Mandalenakis Z. Enhanced prediction of atrial fibrillation and mortality among patients with congenital heart disease using nationwide register-based medical hospital data and neural networks. Eur Heart J Digit Health. 2021;2:568–75.
pubmed: 36713111
pmcid: 9707883
doi: 10.1093/ehjdh/ztab065
Verdonschot JAJ, Merlo M, Dominguez F, Wang P, Henkens MTHM, Adriaens ME, et al. Phenotypic clustering of dilated cardiomyopathy patients highlights important pathophysiological differences. Eur Heart J. 2021;42:162–74.
pubmed: 33156912
doi: 10.1093/eurheartj/ehaa841
Overmars LM, van Es B, Groepenhoff F, De Groot MCH, Pasterkamp G, den Ruijter HM, et al. Preventing unnecessary imaging in patients suspect of coronary artery disease through machine learning of electronic health records. Eur Heart J Digit Health. 2021;3:11–19.
pubmed: 36713995
pmcid: 9707976
doi: 10.1093/ehjdh/ztab103
Vranken JF, van de Leur RR, Gupta DK, Juarez Orozco LE, Hassink RJ, van der Harst P, et al. Uncertainty estimation for deep learning-based automated analysis of 12-lead electrocardiograms. Eur Heart J Digit Health. 2021;2:401–15.
pubmed: 36713602
pmcid: 9707930
doi: 10.1093/ehjdh/ztab045
D’Ascenzo F, De Filippo O, Gallone G, Mittone G, Deriu MA, Iannaccone M, et al. Machine learning-based prediction of adverse events following an acute coronary syndrome (PRAISE): a modelling study of pooled datasets. Lancet. 2021;397:199–207.
pubmed: 33453782
doi: 10.1016/S0140-6736(20)32519-8
Unterhuber M, Kresoja KP, Rommel KP, Besler C, Baragetti A, Klöting N, et al. Proteomics-enabled deep learning machine algorithms can enhance prediction of mortality. J Am Coll Cardiol. 2021;78:1621–31.
pubmed: 34649700
doi: 10.1016/j.jacc.2021.08.018
Schuwerk R, Freitag-Wolf S, Krupickova S, Gabbert DD, Uebing A, Langguth P, et al. Ventricular and atrial function and deformation is largely preserved after arterial switch operation. Heart. 2021;107:1644–50.
pubmed: 34349009
doi: 10.1136/heartjnl-2021-319410
Unterhuber M, Rommel KP, Kresoja KP, Lurz J, Kornej J, Hindricks G, et al. Deep learning detects heart failure with preserved ejection fraction using a baseline electrocardiogram. Eur Heart J Digit Health. 2021;2:699–703.
pubmed: 36713109
pmcid: 9707942
doi: 10.1093/ehjdh/ztab081
Prifti E, Fall A, Davogustto G, Pulini A, Denjoy I, Funck-Brentano C, et al. Deep learning analysis of electrocardiogram for risk prediction of drug-induced arrhythmias and diagnosis of long QT syndrome. Eur Heart J. 2021;42:3948–61.
pubmed: 34468739
doi: 10.1093/eurheartj/ehab588
Schrutka L, Anner P, Agibetov A, Seirer B, Dusik F, Rettl R, et al. Machine learning-derived electrocardiographic algorithm for the detection of cardiac amyloidosis. Heart. 2022;108:1137–47.
pubmed: 34716183
doi: 10.1136/heartjnl-2021-319846
Tayal U, Verdonschot JAJ, Hazebroek MR, Howard J, Gregson J, Newsome S, et al. Precision phenotyping of dilated cardiomyopathy using multidimensional data. J Am Coll Cardiol. 2022;79:2219–32.
pubmed: 35654493
pmcid: 9168440
doi: 10.1016/j.jacc.2022.03.375
Alabed S, Uthoff J, Zhou S, Garg P, Dwivedi K, Alandejani F, et al. Machine learning cardiac-MRI features predict mortality in newly diagnosed pulmonary arterial hypertension. Eur Heart J Digit Health. 2022;3:265–75.
pubmed: 36713008
pmcid: 9708011
doi: 10.1093/ehjdh/ztac022
Hill NR, Groves L, Dickerson C, Ochs A, Pang D, Lawton S, et al. Identification of undiagnosed atrial fibrillation using a machine learning risk-prediction algorithm and diagnostic testing (PULsE-AI) in primary care: a multi-centre randomized controlled trial in England. Eur Heart J Digit Health. 2022;3:195–204.
pubmed: 36713002
pmcid: 9707963
doi: 10.1093/ehjdh/ztac009
Sau A, Ibrahim S, Ahmed A, Handa B, Kramer DB, Waks JW, et al. Artificial intelligence-enabled electrocardiogram to distinguish cavotricuspid isthmus dependence from other atrial tachycardia mechanisms. Eur Heart J Digit Health. 2022;3:405–14.
pubmed: 36712163
pmcid: 9708023
doi: 10.1093/ehjdh/ztac042
Li Y, Salimi-Khorshidi G, Rao S, Canoy D, Hassaine A, Lukasiewicz T, et al. Validation of risk prediction models applied to longitudinal electronic health record data for the prediction of major cardiovascular events in the presence of data shifts. Eur Heart J Digit Health. 2022;3:535–47.
pubmed: 36710898
pmcid: 9779795
doi: 10.1093/ehjdh/ztac061
Doudesis D, Lee KK, Yang J, Wereski R, Shah ASV, Tsanas A, et al. Validation of the myocardial-ischaemic-injury-index machine learning algorithm to guide the diagnosis of myocardial infarction in a heterogenous population: a prespecified exploratory analysis. Lancet Digit Health. 2022;4:e300–8.
pubmed: 35461689
pmcid: 9052331
doi: 10.1016/S2589-7500(22)00025-5
Bachtiger P, Petri CF, Scott FE, Ri Park S, Kelshiker MA, Sahemey HK, et al. Point-of-care screening for heart failure with reduced ejection fraction using artificial intelligence during ECG-enabled stethoscope examination in London, UK: a prospective, observational, multicentre study. Lancet Digit Health. 2022;4:e117–25.
pubmed: 34998740
pmcid: 8789562
doi: 10.1016/S2589-7500(21)00256-9
Wenzl FA, Kraler S, Ambler G, Weston C, Herzog SA, Räber L, et al. Sex-specific evaluation and redevelopment of the GRACE score in non-ST-segment elevation acute coronary syndromes in populations from the UK and Switzerland: a multinational analysis with external cohort validation. Lancet. 2022;400:744–56.
pubmed: 36049493
doi: 10.1016/S0140-6736(22)01483-0
Laumer F, Di Vece D, Cammann VL, Würdinger M, Petkova V, Schönberger M, et al. Assessment of artificial intelligence in echocardiography diagnostics in differentiating Takotsubo syndrome from myocardial infarction. JAMA Cardiol. 2022;7:494–503.
pubmed: 35353118
pmcid: 8968683
doi: 10.1001/jamacardio.2022.0183
Nurmohamed NS, Belo Pereira JP, Hoogeveen RM, Kroon J, Kraaijenhof JM, Waissi F, et al. Targeted proteomics improves cardiovascular risk prediction in secondary prevention. Eur Heart J. 2022;43:1569–77.
pubmed: 35139537
pmcid: 9020984
doi: 10.1093/eurheartj/ehac055
van de Leur RR, Bos MN, Taha K, Sammani A, Yeung MW, van Duijvenboden S, et al. Improving explainability of deep neural network-based electrocardiogram interpretation using variational auto-encoders. Eur Heart J Digit Health. 2022;3:390–404.
pubmed: 36712164
pmcid: 9707974
doi: 10.1093/ehjdh/ztac038
Werfel S, Günthner R, Hapfelmeier A, Hanssen H, Kotliar K, Heemann U, et al. Identification of cardiovascular high-risk groups from dynamic retinal vessel signals using untargeted machine learning. Cardiovasc Res. 2022;118:612–21.
pubmed: 33576412
doi: 10.1093/cvr/cvab040
König S, Pellissier V, Hohenstein S, Leiner J, Meier-Hellmann A, Kuhlen R, et al. From population- to patient-based prediction of in-hospital mortality in heart failure using machine learning. Eur Heart J Digit Health. 2022;3:307–10.
pubmed: 36713020
pmcid: 9708014
doi: 10.1093/ehjdh/ztac012
Makimoto H, Shiraga T, Kohlmann B, Magnisali CE, Gerguri S, Motoyama N, et al. Efficient screening for severe aortic valve stenosis using understandable artificial intelligence: a prospective diagnostic accuracy study. Eur Heart J Digit Health. 2022;3:141–52.
pubmed: 36713014
pmcid: 9707975
doi: 10.1093/ehjdh/ztac029
Kwon JM, Cho Y, Jeon KH, Cho S, Kim KH, Baek SD, et al. A deep learning algorithm to detect anaemia with ECGs: a retrospective, multicentre study. Lancet Digit Health. 2020;2:e358–67.
pubmed: 33328095
doi: 10.1016/S2589-7500(20)30108-4
Choi DJ, Park JJ, Ali T, Lee S. Artificial intelligence for the diagnosis of heart failure. NPJ Digital Med. 2020;3:54.
doi: 10.1038/s41746-020-0261-3
Toba S, Mitani Y, Yodoya N, Ohashi H, Sawada H, Hayakawa H, et al. Prediction of pulmonary to systemic flow ratio in patients with congenital heart disease using deep learning-based analysis of chest radiographs. JAMA Cardiol. 2020;5:449–57.
pubmed: 31968049
pmcid: 6990846
doi: 10.1001/jamacardio.2019.5620
Lin S, Li Z, Fu B, Chen S, Li X, Wang Y, et al. Feasibility of using deep learning to detect coronary artery disease based on facial photo. Eur Heart J. 2020;41:4400–11.
pubmed: 32818267
doi: 10.1093/eurheartj/ehaa640
Yan BP, Lai WHS, Chan CKY, Au ACK, Freedman B, Poh YC, et al. High-throughput, contact-free detection of atrial fibrillation from video with deep learning. JAMA Cardiol. 2020;5:105–7.
pubmed: 31774461
doi: 10.1001/jamacardio.2019.4004
Zhu H, Cheng C, Yin H, Li X, Zuo P, Ding J, et al. Automatic multilabel electrocardiogram diagnosis of heart rhythm or conduction abnormalities with deep learning: a cohort study. Lancet Digit Health. 2020;2:e348–57.
pubmed: 33328094
doi: 10.1016/S2589-7500(20)30107-2
Loh R, Yeo SY, Tan RS, Gao F, Koh AS. Explainable machine learning predictions to support personalized cardiology strategies. Eur Heart J Digit Health. 2021;3:49–55.
pubmed: 36713989
pmcid: 9708009
doi: 10.1093/ehjdh/ztab096
Kwak S, Everett RJ, Treibel TA, Yang S, Hwang D, Ko T, et al. Markers of myocardial damage predict mortality in patients with aortic stenosis. J Am Coll Cardiol. 2021;78:545–58.
pubmed: 34353531
doi: 10.1016/j.jacc.2021.05.047
Rim TH, Lee CJ, Tham YC, Cheung N, Yu M, Lee G, et al. Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs. Lancet Digit Health. 2021;3:e306–16.
pubmed: 33890578
doi: 10.1016/S2589-7500(21)00043-1
Nakamura K, Kojima R, Uchino E, Ono K, Yanagita M, Murashita K, et al. Health improvement framework for actionable treatment planning using a surrogate Bayesian model. Nat Commun. 2021;12:3088.
pubmed: 34035243
pmcid: 8149666
doi: 10.1038/s41467-021-23319-1
Chang KC, Hsieh PH, Wu MY, Wang YC, Wei JT, Shih ESC, et al. Usefulness of multi-labelling artificial intelligence in detecting rhythm disorders and acute ST-elevation myocardial infarction on 12-lead electrocardiogram. Eur Heart J Digit Health. 2021;2:299–310.
pubmed: 36712388
pmcid: 9708016
doi: 10.1093/ehjdh/ztab029
Tromp J, Seekings PJ, Hung CL, Iversen MB, Frost MJ, Ouwerkerk W, et al. Automated interpretation of systolic and diastolic function on the echocardiogram: a multicohort study. Lancet Digit Health. 2022;4:e46–54.
pubmed: 34863649
doi: 10.1016/S2589-7500(21)00235-1
Shih LC, Wang YC, Hung MH, Cheng H, Shiao YC, Tseng YH, et al. Prediction of white-coat hypertension and white-coat uncontrolled hypertension using machine learning algorithm. Eur Heart J Digit Health. 2022;3:559–69.
pubmed: 36710891
pmcid: 9779877
doi: 10.1093/ehjdh/ztac066
Lin C, Chau T, Lin CS, Shang HS, Fang WH, Lee DJ, et al. Point-of-care artificial intelligence-enabled ECG for dyskalemia: a retrospective cohort analysis for accuracy and outcome prediction. NPJ Digital Med. 2022;5:8.
doi: 10.1038/s41746-021-00550-0
Choi B, Jang JH, Son M, Lee MS, Jo YY, Jeon JY, et al. Electrocardiographic biomarker based on machine learning for detecting overt hyperthyroidism. Eur Heart J Digit Health. 2022;3:255–64.
pubmed: 36713007
pmcid: 9707932
doi: 10.1093/ehjdh/ztac013
Than MP, Pickering JW, Sandoval Y, Shah ASV, Tsanas A, Apple FS, et al. Machine learning to predict the likelihood of acute myocardial infarction. Circulation. 2019;140:899–909.
pubmed: 31416346
pmcid: 6749969
doi: 10.1161/CIRCULATIONAHA.119.041980
Ribeiro AH, Ribeiro MH, Paixão GMM, Oliveira DM, Gomes PR, Canazart JA, et al. Automatic diagnosis of the 12-lead ECG using a deep neural network. Nat Commun. 2020;11:1760.
pubmed: 32273514
pmcid: 7145824
doi: 10.1038/s41467-020-15432-4
Lima EM, Ribeiro AH, Paixão GMM, Ribeiro MH, Pinto-Filho MM, Gomes PR, et al. Deep neural network-estimated electrocardiographic age as a mortality predictor. Nat Commun. 2021;12:5117.
pubmed: 34433816
pmcid: 8387361
doi: 10.1038/s41467-021-25351-7
Biton S, Gendelman S, Ribeiro AH, Miana G, Moreira C, Ribeiro ALP, et al. Atrial fibrillation risk prediction from the 12-lead electrocardiogram using digital biomarkers and deep representation learning. Eur Heart J Digit Health. 2021;2:576–85.
pubmed: 36713102
pmcid: 9707938
doi: 10.1093/ehjdh/ztab071
Fabritz L, Connolly DL, Czarnecki E, Dudek D, Guasch E, Haase D, et al. Smartphone and wearable detected atrial arrhythmias in older adults: results of a fully digital European case finding study. Eur Heart J Digit Health. 2022;3:610–25.
pubmed: 36710894
pmcid: 9779806
doi: 10.1093/ehjdh/ztac067
Perez MV, Mahaffey KW, Hedlin H, Rumsfeld JS, Garcia A, Ferris T, et al. Large-scale assessment of a smartwatch to identify atrial fibrillation. N Engl J Med. 2019;381:1909–17.
pubmed: 31722151
pmcid: 8112605
doi: 10.1056/NEJMoa1901183
Lubitz SA, Faranesh AZ, Selvaggi C, Atlas SJ, McManus DD, Singer DE, et al. Detection of atrial fibrillation in a large population using wearable devices: the Fitbit Heart Study. Circulation. 2022;146:1415–24.
pubmed: 36148649
pmcid: 9640290
doi: 10.1161/CIRCULATIONAHA.122.060291
Oikonomou EK, Spatz ES, Suchard MA, Khera R. Individualising intensive systolic blood pressure reduction in hypertension using computational trial phenomaps and machine learning: a post-hoc analysis of randomised clinical trials. Lancet Digit Health. 2022;4:e796–805.
pubmed: 36307193
pmcid: 9768739
doi: 10.1016/S2589-7500(22)00170-4
U.S. Department of Health and Human Services Food and Drug Administration. Clinical Decision Support Software—Guidance for industry and food and drug administration staff. 2023. https://www.fda.gov/media/109618/download .
Kung TH, Cheatham M, Medenilla A, Sillos C, De Leon L, Elepaño C, et al. Performance of ChatGPT on USMLE: potential for AI-assisted medical education using large language models. PLoS Digit Health. 2023;2:e0000198.
pubmed: 36812645
pmcid: 9931230
doi: 10.1371/journal.pdig.0000198
Ayers JW, Poliak A, Dredze M, Leas EC, Zhu Z, Kelley JB, et al. Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern Med. 2023;183:589–96.
pubmed: 37115527
doi: 10.1001/jamainternmed.2023.1838
Makimoto H, Höckmann M, Lin T, Glöckner D, Gerguri S, Clasen L, et al. Performance of a convolutional neural network derived from an ECG database in recognizing myocardial infarction. Sci Rep. 2020;10:8445.
pubmed: 32439873
pmcid: 7242480
doi: 10.1038/s41598-020-65105-x
U.S. Food and Drug Administration (FDA), Health Canada, and the United Kingdom’s Medicines and Healthcare products Regulatory Agency (MHRA). Good machine learning practice for medical device development: guiding principles. 2023. https://www.fda.gov/media/153486/download .