Computational Screening Using a Combination of Ligand-Based Machine Learning and Molecular Docking Methods for the Repurposing of Antivirals Targeting the SARS-CoV-2 Main Protease.
COVID-19
Drug repurposing
Ligand-based virtual screening
Molecular docking
Mpro
Journal
Daru : journal of Faculty of Pharmacy, Tehran University of Medical Sciences
ISSN: 2008-2231
Titre abrégé: Daru
Pays: Switzerland
ID NLM: 101125969
Informations de publication
Date de publication:
31 Oct 2023
31 Oct 2023
Historique:
received:
21
02
2023
accepted:
20
09
2023
medline:
1
11
2023
pubmed:
1
11
2023
entrez:
1
11
2023
Statut:
aheadofprint
Résumé
COVID-19 is an infectious disease caused by SARS-CoV-2, a close relative of SARS-CoV. Several studies have searched for COVID-19 therapies. The topics of these works ranged from vaccine discovery to natural products targeting the SARS-CoV-2 main protease (M This study aims to repurpose 10692 drugs in DrugBank by using ligand-based virtual screening (LBVS) machine learning (ML) with Konstanz Information Miner (KNIME) to seek potential therapeutics based on M This study identified 3,166 compound candidates inhibiting M Results demonstrated the efficiency of LBVS combined with MD. This combined strategy provided positive evidence showing that the top screened drugs, including CCX-140, which had the lowest MD score, can be reasonably advanced to the in vitro phase. This combined method may accelerate the discovery of therapies for novel or orphan diseases from existing drugs.
Sections du résumé
BACKGROUND
BACKGROUND
COVID-19 is an infectious disease caused by SARS-CoV-2, a close relative of SARS-CoV. Several studies have searched for COVID-19 therapies. The topics of these works ranged from vaccine discovery to natural products targeting the SARS-CoV-2 main protease (M
METHOD
METHODS
This study aims to repurpose 10692 drugs in DrugBank by using ligand-based virtual screening (LBVS) machine learning (ML) with Konstanz Information Miner (KNIME) to seek potential therapeutics based on M
RESULTS
RESULTS
This study identified 3,166 compound candidates inhibiting M
CONCLUSION
CONCLUSIONS
Results demonstrated the efficiency of LBVS combined with MD. This combined strategy provided positive evidence showing that the top screened drugs, including CCX-140, which had the lowest MD score, can be reasonably advanced to the in vitro phase. This combined method may accelerate the discovery of therapies for novel or orphan diseases from existing drugs.
Identifiants
pubmed: 37907683
doi: 10.1007/s40199-023-00484-w
pii: 10.1007/s40199-023-00484-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Informations de copyright
© 2023. The Author(s), under exclusive licence to Tehran University of Medical Sciences.
Références
JHU. COVID-19 Map. In: Johns Hopkins Coronavirus Resource Center. 2022. https://coronavirus.jhu.edu/map.html .
NHS. SARS (severe acute respiratory syndrome). 2022. https://www.nhs.uk/conditions/sars/ . Accessed 11 Feb 2022.
Abd El-Aziz TM, Al-Sabi A, Stockand JD. Human recombinant soluble ACE2 (hrsACE2) shows promise for treating severe COVID19. Sig Transduct Target Ther. 2020;5(1):1–2. https://doi.org/10.1038/s41392-020-00374-6 .
doi: 10.1038/s41392-020-00374-6
Clinical Trials. COVID-19 Clinical Trials Drug. 2022. https://clinicaltrials.gov/ct2/results?cond=2019nCoV&Search=Clear&age_v=&gndr=&type=&rslt= . Accessed 23 Jan 2022.
Clinical Trials Arena. Coronavirus treatment: Vaccines/drugs in the pipeline for COVID-19. 2022. https://www.clinicaltrialsarena.com/analysis/coronavirus-mers-cov-drugs/ . Accessed 21 Jan 2022.
Gautret P, Lagier JC, Parola P, Hoang VT, Medded L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: preliminary results of an open-label non-randomized clinical trial. 2020.
RAPS. COVID-19 vaccine tracker. 2022. https://www.raps.org/news-and-articles/news-articles/2020/3/covid-19-vaccine-tracker . Accessed 23 Jan 2022.
Akinlalu AO, Chamundi A, Yakumbur DT, Afolayan FID, Duru IA, Arowosegbe MA, et al. Repurposing FDA-approved drugs against multiple proteins of SARS-CoV-2: an in silico study. Sci Afr. 2021;13:e00845. https://doi.org/10.1016/j.sciaf.2021.e00845 .
doi: 10.1016/j.sciaf.2021.e00845
pubmed: 34308004
pmcid: 8272888
Hoertel N, Sánchez-Rico M, Cougoule C, Gulbins E, Kornhuber J, Carpinteiro A, et al. Repurposing antidepressants inhibiting the sphingomyelinase acid/ceramide system against COVID-19: current evidence and potential mechanisms. Mol Psychiatry. 2021;26(12):7098–9. https://doi.org/10.1038/s41380-021-01254-3 .
doi: 10.1038/s41380-021-01254-3
pubmed: 34385600
pmcid: 8359627
Kandeel M, Abdelrahman AHM, Oh-Hashi K, Ibrahim A, Venugopala KN, Morsy MA, et al. Repurposing of FDA-approved antivirals, antibiotics, anthelmintics, antioxidants, and cell protectives against SARS-CoV-2 papain-like protease. J Biomol Struct Dyn. 2021;39(14):5129–36. https://doi.org/10.1080/07391102.2020.1784291 .
doi: 10.1080/07391102.2020.1784291
pubmed: 32597315
Singh AK, Singh A, Dubey AK. Repurposed therapeutic strategies towards COVID-19 potential targets based on genomics and protein structure remodeling. IntechOpen. 2021.
Qamar MT, Alqahtani SM, Alamri MA, Chen L-L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal. 2020;10(4):313–9. https://doi.org/10.1016/j.jpha.2020.03.009 .
doi: 10.1016/j.jpha.2020.03.009
Lu J, Chen SA, Khan MB, Brassard R, Arutyunova E, Lamer T, et al. Crystallization of feline coronavirus Mpro with GC376 reveals mechanism of inhibition. Front Chem. 2022:10.
Mahase E. Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ. 2021;n2713. https://doi.org/10.1136/bmj.n2713 .
Mengist HM, Mekonnen D, Mohammed A, Shi R, Jin T. Potency, safety, and pharmacokinetic profiles of potential inhibitors targeting SARS-CoV-2 main protease. Front Pharmacol. 2021;11:630500. https://doi.org/10.3389/fphar.2020.630500 .
Mody V, Ho J, Wills S, Mawri A, Lawson L, Ebert MCCJC, et al. Identification of 3-chymotrypsin like protease (3CLPro) inhibitors as potential anti-SARS-CoV-2 agents. Commun Biol. 2021;4(1):1–10. https://doi.org/10.1038/s42003-020-01577-x .
doi: 10.1038/s42003-020-01577-x
Sharun K, Tiwari R, Dhama K. Protease inhibitor GC376 for COVID-19: lessons learned from feline infectious peritonitis. Ann Med Surg (Lond). 2020;61:122–5. https://doi.org/10.1016/j.amsu.2020.12.030 .
doi: 10.1016/j.amsu.2020.12.030
pubmed: 33456770
Andreani J, Le Bideau M, Duflot I, Jardot P, Rolland C, Boxberger M, et al. In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb Pathog. 2020;145:104228.
doi: 10.1016/j.micpath.2020.104228
pubmed: 32344177
pmcid: 7182748
Choudhary R, Sharma AK. Potential use of hydroxychloroquine, ivermectin and azithromycin drugs in fighting COVID-19: trends, scope and relevance. New Microbes New Infect. 2020;35:100684.
doi: 10.1016/j.nmni.2020.100684
pubmed: 32322397
pmcid: 7175902
Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252–6. https://doi.org/10.1136/thorax.2003.012658 .
doi: 10.1136/thorax.2003.012658
pubmed: 14985565
pmcid: 1746980
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–71. https://doi.org/10.1038/s41422-020-0282-0 .
doi: 10.1038/s41422-020-0282-0
pubmed: 32020029
pmcid: 7054408
Javelot H, El-Hage W, Meyer G, Becker G, Michel B, Hingray C. COVID-19 and (hydroxy) chloroquine–azithromycin combination: should we take the risk for our patients? Br J Clin Pharmacol. 2020;86(6):1176.
doi: 10.1111/bcp.14335
pubmed: 32350872
pmcid: 7256125
Gadaleta D, Lombardo A, Toma C, Benfenati E. A new semi-automated workflow for chemical data retrieval and quality checking for modeling applications. J Cheminformatics. 2018;10(1):60. https://doi.org/10.1186/s13321-018-0315-6 .
doi: 10.1186/s13321-018-0315-6
DCIS. Daylight Theory: SMARTS - A Language for Describing Molecular Patterns. 2022. https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html . Accessed 18 Apr 2022.
Bajorath J. Machine learning and similarity-based virtual screening techniques. In: Silico drug discovery and design. Unitec house, 2 Albert place. London: Future Science Ltd; 2013. p. 134–46.
doi: 10.4155/ebo.12.419
Maggiora G, Vogt M, Stumpfe D, Bajorath J. Molecular similarity in medicinal chemistry. J Med Chem. 2014;57(8):3186–204. https://doi.org/10.1021/jm401411z .
doi: 10.1021/jm401411z
pubmed: 24151987
Massagué AC, Ojeda MJ, Valls C, Mulero M, Garcia-Vallvé S, Pujadas G. Molecular fingerprint similarity search in virtual screening. Methods. 2015;71:58–63. https://doi.org/10.1016/j.ymeth.2014.08.005 .
doi: 10.1016/j.ymeth.2014.08.005
Mysinger MM, Carchia M, Irwin JJ, Shoichet BK. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem. 2012;55(14):6582–94. https://doi.org/10.1021/jm300687e .
doi: 10.1021/jm300687e
pubmed: 22716043
pmcid: 3405771
Cichonska A, Ravikumar B, Allaway RJ, Park S, Wan F, Isayev O, et al. Crowdsourced mapping extends the target space of kinase inhibitors. bioRxiv; 2020. p. https://doi.org/10.1101/2019.12.31.891812 .
PDB. Resolution - Proteopedia, life in 3D. 2022. https://proteopedia.org/wiki/index.php/Resolution . Accessed 20 Apr 2022.
Hu Y, Stumpfe D, Bajorath J. Computational exploration of molecular scaffolds in medicinal chemistry. J Med Chem. 2016;59(9):4062–76. https://doi.org/10.1021/acs.jmedchem.5b01746 .
doi: 10.1021/acs.jmedchem.5b01746
pubmed: 26840095
Yang Y. Chapter 3 - temporal data clustering. In: Yang Y, editor. Temporal data mining via unsupervised ensemble learning. Elsevier; 2017. p. 19–34.
doi: 10.1016/B978-0-12-811654-8.00003-8
Chaudhaery SS, Roy KK, Saxena AK. Consensus superiority of the pharmacophore-based alignment, over maximum common substructure (MCS): 3D-QSAR studies on carbamates as acetylcholinesterase inhibitors. J Chem Inf Model. 2009;49(6):1590–601. https://doi.org/10.1021/ci900049e .
doi: 10.1021/ci900049e
pubmed: 19441865
Nighania K. Various ways to evaluate a machine learning models performance. Medium. 2019.
Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717. https://doi.org/10.1038/srep42717 .
doi: 10.1038/srep42717
pubmed: 28256516
pmcid: 5335600
Kumar A, Kumari K, Singh S, Bahadur I, Singh P. Noscapine anticancer drug designed with ionic liquids to enhance solubility: DFT and ADME approach. J Mol Liq. 2021;325:115159. https://doi.org/10.1016/j.molliq.2020.115159 .
doi: 10.1016/j.molliq.2020.115159
Pires DEV, Blundell TL, Ascher DB. Pkcsm: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58(9):4066–72. https://doi.org/10.1021/acs.jmedchem.5b00104 .
doi: 10.1021/acs.jmedchem.5b00104
pubmed: 25860834
pmcid: 4434528
Hermawan A, Wulandari F, Hanif N, Utomo RY, Jenie RI, Ikawati M, et al. Identification of potential targets of the curcumin analog CCA-1.1 for glioblastoma treatment : integrated computational analysis and in vitro study. Sci Rep. 2022;12(1):13928. https://doi.org/10.1038/s41598-022-18348-9 .
doi: 10.1038/s41598-022-18348-9
pubmed: 35977996
pmcid: 9385707
Fu L, Ye F, Feng Y, Yu F, Wang Q, Wu Y, et al. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat Commun. 2020;11(1) https://doi.org/10.1038/s41467-020-18233-x .
Oerlemans R, Ruiz-Moreno AJ, Cong Y, Kumar ND, Velasco-Velazquez MA, Neochoritis CG, et al. Repurposing the HCV NS3–4A protease drug boceprevir as COVID-19 therapeutics. RSC Med Chem. 2021;12(3):370–9. https://doi.org/10.1039/D0MD00367K .
doi: 10.1039/D0MD00367K
Oughtred R, Rust J, Chang C, Breitkreutz B-J, Stark C, Willems A, et al. The BioGRID database: a comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci. 2021;30(1):187–200. https://doi.org/10.1002/pro.3978 .
doi: 10.1002/pro.3978
pubmed: 33070389
Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(4):S11. https://doi.org/10.1186/1752-0509-8-S4-S11 .
doi: 10.1186/1752-0509-8-S4-S11
pubmed: 25521941
pmcid: 4290687
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303 .
doi: 10.1101/gr.1239303
pubmed: 14597658
pmcid: 403769
Brownlee J. How to know if your machine learning model has good performance. Machine Learning Mastery. 2018.
El Khouli RH, Macura KJ, Barker PB, Phil D, Habba MR, Jacobs MA, et al. The relationship of temporal resolution to diagnostic performance for dynamic contrast enhanced (DCE) MRI of the breast. J Magn Reson Imaging. 2009;30(5):999–1004. https://doi.org/10.1002/jmri.21947 .
doi: 10.1002/jmri.21947
pubmed: 19856413
pmcid: 2935260
McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276–82.
doi: 10.11613/BM.2012.031
pubmed: 23092060
Azzahra SNA, Hanif N, Hermawan A. MDM2 is a potential target gene of glycyrrhizic acid for circumventing breast cancer resistance to tamoxifen: integrative bioinformatics analysis. Asian Pac J Cancer Prev. 2022;23(7):2341–50. https://doi.org/10.31557/APJCP.2022.23.7.2341 .
doi: 10.31557/APJCP.2022.23.7.2341
pubmed: 35901340
pmcid: 9727350
Gill AJ. Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology. 2018;72(1):106–16. https://doi.org/10.1111/his.13277 .
doi: 10.1111/his.13277
pubmed: 29239034
Szymura SJ, Bernal GM, Wu L, Zhang Z, Crawley CD, Voce DJ, et al. DDX39B interacts with the pattern recognition receptor pathway to inhibit NF-κB and sensitize to alkylating chemotherapy. BMC Biol. 2020;18(1):32. https://doi.org/10.1186/s12915-020-0764-z .
doi: 10.1186/s12915-020-0764-z
pubmed: 32209106
pmcid: 7093963
Chan JF-W, Kok K-H, Zhu Z, Chu H, To KK-W, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect. 2020;9(1):221–36. https://doi.org/10.1080/22221751.2020.1719902 .
doi: 10.1080/22221751.2020.1719902
Belotserkovskaya R, Oh S, Bondarenko VA, Orphanides G, Studitsky VM, Reinberg D. FACT facilitates transcription-dependent nucleosome alteration. Science. 2003;301(5636):1090–3. https://doi.org/10.1126/science.1085703 .
doi: 10.1126/science.1085703
pubmed: 12934006
Cui J, Wang L, Ren X, Zhang Y, Zhang H. LRPPRC: a multifunctional protein involved in energy metabolism and human disease. Front Physiol. 2019;10:595. https://doi.org/10.3389/fphys.2019.00595 .
Zhang H-R, Lai S-Y, Huang L-J, Zhang Z-F, Liu J, Zheng S-R, et al. Myosin 1b promotes cell proliferation, migration, and invasion in cervical cancer. Gynecol Oncol. 2018:149. https://doi.org/10.1016/j.ygyno.2018.01.024 .
Ngo HB, Lovely GA, Phillips R, Chan DC. Distinct structural features of TFAM drive mitochondrial DNA packaging versus transcriptional activation. Nat Commun. 2014;5(1):3077. https://doi.org/10.1038/ncomms4077 .
doi: 10.1038/ncomms4077
pubmed: 24435062
Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman A. The integrated stress response. EMBO Rep. 2016;17(10):1374–95. https://doi.org/10.15252/embr.201642195 .
doi: 10.15252/embr.201642195
Amorim IS, Lach G, Gkogkas CG. The role of the eukaryotic translation initiation factor 4E (eIF4E) in neuropsychiatric disorders. Front Genet. 2018;9:561. https://doi.org/10.3389/fgene.2018.00561 .
Romaniello R, Citterio A, Panzeri E, Arrigoni F, De Rinaldis M, Trabacca A, et al. Novel SPTBN2 gene mutation and first intragenic deletion in early onset spinocerebellar ataxia type 5. Ann Clin Transl Neurol. 2021;8(4):956–63. https://doi.org/10.1002/acn3.51345 .
doi: 10.1002/acn3.51345
pubmed: 33756041
pmcid: 8045899
Becker JH, Lin JJ, Doernberg M, Stone K, Navis A, Festa JR, et al. Assessment of cognitive function in patients after COVID-19 infection. JAMA Netw Open. 2021;4(10):e2130645. https://doi.org/10.1001/jamanetworkopen.2021.30645 .
doi: 10.1001/jamanetworkopen.2021.30645
pubmed: 34677597
pmcid: 8536953
Bora VR, Patel BM. The deadly duo of COVID-19 and cancer! Front Mol Biosci. 2021;8:643004. https://doi.org/10.3389/fmolb.2021.643004 .
Hojyo S, Uchida M, Tanaka K, Hasebe R, Tanaka Y, Murakami M, et al. How COVID-19 induces cytokine storm with high mortality. Inflamm Regener. 2020;40(1):37. https://doi.org/10.1186/s41232-020-00146-3 .
doi: 10.1186/s41232-020-00146-3
Liu Y-H, Chen Y, Wang Q-H, Wang L-R, Jiang L, Yang Y, et al. One-year trajectory of cognitive changes in older survivors of COVID-19 in Wuhan, China: a longitudinal cohort study. JAMA Neurology. 2022; https://doi.org/10.1001/jamaneurol.2022.0461 .
Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355–62. https://doi.org/10.1038/s41577-020-0331-4 .
doi: 10.1038/s41577-020-0331-4
pubmed: 32376901
pmcid: 7201395
Povlow A, Auerbach AJ. Acute cerebellar ataxia in COVID-19 infection: a case report. J Emerg Med. 2021;60(1):73–6. https://doi.org/10.1016/j.jemermed.2020.10.010 .
doi: 10.1016/j.jemermed.2020.10.010
pubmed: 33208227
Saini G, Aneja R. Cancer as a prospective sequela of long COVID-19. Bioessays. 2021;43(6):e2000331. https://doi.org/10.1002/bies.202000331 .
doi: 10.1002/bies.202000331
pubmed: 33914346
Sullivan T, Miao Z, Dairaghi DJ, Krasinski A, Wang Y, Zhao BN, et al. CCR2 antagonist CCX140-B provides renal and glycemic benefits in diabetic transgenic human CCR2 knockin mice. Am J Physiol Renal Physiol. 2013;305(9):F1288–F97. https://doi.org/10.1152/ajprenal.00316.2013 .
doi: 10.1152/ajprenal.00316.2013
pubmed: 23986513
pmcid: 4073927
Perez-Gomez MV, Sanchez-Niño MD, Sanz AB, Martín-Cleary C, Ruiz-Ortega M, Egido J, et al. Horizon 2020 in diabetic kidney disease: the clinical trial pipeline for add-on therapies on top of renin angiotensin system blockade. J Clin Med. 2015;4(6):1325–47. https://doi.org/10.3390/jcm4061325 .
doi: 10.3390/jcm4061325
pubmed: 26239562
pmcid: 4485003
Sullivan TJ, Miao Z, Zhao BN, Ertl LS, Wang Y, Krasinski A, et al. Experimental evidence for the use of CCR2 antagonists in the treatment of type 2 diabetes. Metabolism. 2013;62(11):1623–32. https://doi.org/10.1016/j.metabol.2013.06.008 .
doi: 10.1016/j.metabol.2013.06.008
pubmed: 23953944
Stipp MC, Acco A. Involvement of cytochrome P450 enzymes in inflammation and cancer: a review. Cancer Chemother Pharmacol. 2021;87(3):295–309. https://doi.org/10.1007/s00280-020-04181-2 .
doi: 10.1007/s00280-020-04181-2
pubmed: 33112969
Zhao M, Ma J, Li M, Zhang Y, Jiang B, Zhao X, et al. Cytochrome P450 enzymes and drug metabolism in humans. Int J Mol Sci. 2021;22(23):12808. https://doi.org/10.3390/ijms222312808 .
doi: 10.3390/ijms222312808
pubmed: 34884615
pmcid: 8657965
Tao J, Aristotelidis R, Zanowick-Marr A, Chambers LC, McDonald J, Mylonakis EE, et al. Evaluation of the treatment efficacy and safety of remdesivir for COVID-19: a meta-analysis. SN Compr Clin Med. 2021;3(12):2443–54. https://doi.org/10.1007/s42399-021-01014-y .
doi: 10.1007/s42399-021-01014-y
pubmed: 34396045
pmcid: 8346348
Aleissa MM, Silverman EA, Paredes Acosta LM, Nutt CT, Richterman A, Marty FM. New perspectives on antimicrobial agents: remdesivir treatment for COVID-19. Antimicrob Agents Chemother. 2020;65(1). https://doi.org/10.1128/AAC.01814-20 .
Wang G, Xiao B, Deng J, Gong L, Li Y, Li J, et al. The role of cytochrome P450 enzymes in COVID-19 pathogenesis and therapy. Front Pharmacol. 2022;13:791922. https://doi.org/10.3389/fphar.2022.791922 .
doi: 10.3389/fphar.2022.791922
pubmed: 35185562
pmcid: 8847594
Stergiopoulos C, Tsopelas F, Valko K. Prediction of hERG inhibition of drug discovery compounds using biomimetic HPLC measurements. ADMET DMPK. 2021;9(3):191–207. https://doi.org/10.5599/admet.995 .
doi: 10.5599/admet.995
pubmed: 35300361
pmcid: 8920097
Munawar S, Windley MJ, Tse EG, Todd MH, Hill AP, Vandenberg JI, et al. Experimentally validated pharmacoinformatics approach to predict herg inhibition potential of new chemical entities. Front Pharmacol. 2018:9. https://doi.org/10.3389/fphar.2018.01035 .
Kumar S, Singh B, Kumari P, Kumar PV, Agnihotri G, Khan S, et al. Identification of multipotent drugs for COVID-19 therapeutics with the evaluation of their SARS-CoV2 inhibitory activity. Comput Struct Biotechnol J. 2021;19:1998–2017. https://doi.org/10.1016/j.csbj.2021.04.014 .
doi: 10.1016/j.csbj.2021.04.014
pubmed: 33841751
pmcid: 8025584
Theodoridou A, Gika H, Diza E, Garyfallos A, Settas L. In vivo study of pro-inflammatory cytokine changes in serum and synovial fluid during treatment with celecoxib and etoricoxib and correlation with VAS pain change and synovial membrane penetration index in patients with inflammatory arthritis. MJR. 2017;28(1):33–40. https://doi.org/10.31138/mjr.28.1.33 .
doi: 10.31138/mjr.28.1.33
pubmed: 32185252
pmcid: 7045925
Prasher P, Sharma M, Gunupuru R. Targeting cyclooxygenase enzyme for the adjuvant COVID-19 therapy. Drug Dev Res. 2021; https://doi.org/10.1002/ddr.21794 .
Ke Y-Y, Peng T-T, Yeh T-K, Huang W-Z, Chang S-E, Wu S-H, et al. Artificial intelligence approach fighting COVID-19 with repurposing drugs. Biom J. 2020;43(4):355–62. https://doi.org/10.1016/j.bj.2020.05.001 .
doi: 10.1016/j.bj.2020.05.001
Gimeno A, Mestres-Truyol J, Ojeda-Montes MJ, Macip G, Saldivar-Espinoza B, Cereto-Massagué A, et al. Prediction of novel inhibitors of the main protease (M-pro) of SARS-CoV-2 through consensus docking and drug reposition. Int J Mol Sci. 2020;21(11):E3793. https://doi.org/10.3390/ijms21113793 .
doi: 10.3390/ijms21113793
Magro P, Zanella I, Pescarolo M, Castelli F, Quiros-Roldan E. Lopinavir/ritonavir: repurposing an old drug for HIV infection in COVID-19 treatment. Biom J. 2021;44(1):43–53. https://doi.org/10.1016/j.bj.2020.11.005 .
doi: 10.1016/j.bj.2020.11.005
Cvetkovic RS, Goa KL. Lopinavir/ritonavir. Drugs. 2003;63(8):769–802. https://doi.org/10.2165/00003495-200363080-00004 .
doi: 10.2165/00003495-200363080-00004
pubmed: 12662125
Croxtall JD, Perry CM. Lopinavir/ritonavir. Drugs. 2010;70(14):1885–915. https://doi.org/10.2165/11204950-000000000-00000 .
doi: 10.2165/11204950-000000000-00000
pubmed: 20836579
Marzolini C, Stader F, Stoeckle M, Franzeck F, Egli A, Bassetti S, et al. Effect of systemic inflammatory response to SARS-CoV-2 on lopinavir and hydroxychloroquine plasma concentrations. Antimicrob Agents Chemother. 2020;64(9). https://doi.org/10.1128/AAC.01177-20 .
Ma C, Sacco MD, Hurst B, Townsend JA, Hu Y, Szeto T, et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res. 2020;30(8):678–92. https://doi.org/10.1038/s41422-020-0356-z .
doi: 10.1038/s41422-020-0356-z
pubmed: 32541865
pmcid: 7294525
Cáceres CJ, Cardenas-Garcia S, Carnaccini S, Seibert B, Rajao DS, Wang J, et al. Efficacy of GC-376 against SARS-CoV-2 virus infection in the K18 hACE2 transgenic mouse model. Sci Rep. 2021;11(1):9609. https://doi.org/10.1038/s41598-021-89013-w .
doi: 10.1038/s41598-021-89013-w
pubmed: 33953295
pmcid: 8100161
Rizza SA, Talwani R, Nehra V, Temesgen Z. Boceprevir. Drugs of Today. 2011;47(10):743. https://doi.org/10.1358/dot.2011.47.10.1656503 .
doi: 10.1358/dot.2011.47.10.1656503
pubmed: 22076489
Kim Y, Lovell S, Tiew K-C, Mandadapu SR, Alliston KR, Battaile KP, et al. Broad-spectrum antivirals against 3C or 3C-like proteases of picornaviruses, noroviruses, and coronaviruses. J Virol. 2012;86(21):11754–62. https://doi.org/10.1128/JVI.01348-12 .
doi: 10.1128/JVI.01348-12
pubmed: 22915796
pmcid: 3486288
Didziapetris R, Japertas P, Avdeef A, Petrauskas A. Classification analysis of P-glycoprotein substrate specificity. J Drug Target. 2003;11(7):391–406. https://doi.org/10.1080/10611860310001648248 .
doi: 10.1080/10611860310001648248
pubmed: 15203928
Mandò C, Savasi VM, Anelli GM, Corti S, Serati A, Lisso F, et al. Mitochondrial and oxidative unbalance in placentas from mothers with SARS-CoV-2 infection. Antioxidants. 2021;10(10):1517. https://doi.org/10.3390/antiox10101517 .
doi: 10.3390/antiox10101517
pubmed: 34679654
pmcid: 8533135
Refolo G, Ciccosanti F, Di Rienzo M, Basulto Perdomo A, Romani M, Alonzi T, et al. Negative regulation of mitochondrial antiviral signaling protein-mediated antiviral signaling by the mitochondrial protein LRPPRC during hepatitis C virus infection. Hepatology. 2019;69(1):34–50. https://doi.org/10.1002/hep.30149 .
doi: 10.1002/hep.30149
pubmed: 30070380
Dong A, Zhao J, Griffin C, Wu R. The genomic physics of COVID-19 pathogenesis and spread. Cells. 2022;11(1):80. https://doi.org/10.3390/cells11010080 .
doi: 10.3390/cells11010080
McCarthy MK, Weinberg JB. The immunoproteasome and viral infection: a complex regulator of inflammation. Front Microbiol. 2015;6(1):630500. https://doi.org/10.3389/fphar.2020.630500 .
West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520(7548):553–7. https://doi.org/10.1038/nature14156 .
doi: 10.1038/nature14156
pubmed: 25642965
pmcid: 4409480
Sooryanarain H, Rogers AJ, Cao D, Haac MER, Karpe YA, Meng X-J. ISG15 modulates type I interferon signaling and the antiviral response during hepatitis E virus replication. J Virol. 2017;91(19):e00621–17. https://doi.org/10.1128/JVI.00621-17 .
doi: 10.1128/JVI.00621-17
pubmed: 28724761
pmcid: 5599768
Zhou D, Park J-G, Wu Z, Huang H, Fiches GN, Biswas A, et al. FACT subunit SUPT16H associates with BRD4 and contributes to silencing of antiviral interferon signaling. Mol Biol. 2021.
Wenzel J, Lampe J, Müller-Fielitz H, Schuster R, Zille M, Müller K, et al. The SARS-CoV-2 main protease Mpro causes microvascular brain pathology by cleaving NEMO in brain endothelial cells. Nat Neurosci. 2021;24(11):1522–33. https://doi.org/10.1038/s41593-021-00926-1 .
doi: 10.1038/s41593-021-00926-1
pubmed: 34675436
pmcid: 8553622