Expression of sucrose metabolizing enzymes in different sugarcane varieties under progressive heat stress.

heat stress stress damage indicators sucrose content sucrose metabolizing enzymes sugarcane thermotolerance potential

Journal

Frontiers in plant science
ISSN: 1664-462X
Titre abrégé: Front Plant Sci
Pays: Switzerland
ID NLM: 101568200

Informations de publication

Date de publication:
2023
Historique:
received: 30 07 2023
accepted: 07 09 2023
medline: 1 11 2023
pubmed: 1 11 2023
entrez: 1 11 2023
Statut: epublish

Résumé

Studying the thermal stress effect on sucrose-metabolizing enzymes in sugarcane is of great importance for understanding acclimation to thermal stress. In this study, two varieties, S2003-US-633 and SPF-238, were grown at three different temperatures ( ± 2°C): 30°C as a control, 45°C for various episodes of high temperature treatments and recovery conditions at 24, 48 and 72 hours. Data showed that reducing sugar content increased until the grand growth stage but sharply declined at the maturity stage in both cultivars. On the other hand, sucrose is enhanced only at the maturity stage. The expression of all invertase isozymes declined prominently; however, the expression of SPS was high at the maturity stage. Hence, the sucrose accumulation in mature cane was due to increased SPS activity while decreased invertase isozymes (vacuolar, cytoplasmic and cell wall) activities at maturity stage in both cultivars. Heat shock decreased the sucrose metabolizing enzymes, sucrose content and sugar recovery rate in both cultivars. In contrast, heat-shock treatments induced maximum proline, MDA, H

Identifiants

pubmed: 37908828
doi: 10.3389/fpls.2023.1269521
pmc: PMC10614296
doi:

Types de publication

Journal Article

Langues

eng

Pagination

1269521

Informations de copyright

Copyright © 2023 Mehdi, Liu, Riaz, Javed, Aman and Galani.

Déclaration de conflit d'intérêts

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Références

Methods Mol Biol. 2012;869:465-9
pubmed: 22585511
Trends Plant Sci. 2019 Mar;24(3):220-236
pubmed: 30797425
Trends Plant Sci. 1999 Oct;4(10):401-407
pubmed: 10498964
Anal Biochem. 1976 May 7;72:248-54
pubmed: 942051
Plants (Basel). 2020 Feb 06;9(2):
pubmed: 32041093
Annu Rev Plant Biol. 2018 Apr 29;69:209-236
pubmed: 29489394
Biomed Res Int. 2018 Jun 10;2018:5746525
pubmed: 29984238
BMC Genomics. 2023 Jan 13;24(1):18
pubmed: 36639618
J Exp Bot. 2001 Dec;52(365):2375-80
pubmed: 11709587
Int J Mol Sci. 2013 May 03;14(5):9643-84
pubmed: 23644891
Protoplasma. 2018 Jan;255(1):163-174
pubmed: 28699026
Plant Physiol Biochem. 2014 Jan;74:165-75
pubmed: 24308986
Plant Physiol. 1963 May;38(3):338-43
pubmed: 16655793
Plant Cell Environ. 2019 Jan;42(1):115-132
pubmed: 29532945
Plant Physiol. 1997 Sep;115(1):273-82
pubmed: 9306701
Plant Physiol. 1972 Jun;49(6):912-3
pubmed: 16658082
Indian J Plant Physiol. 2018;23(2):245-260
pubmed: 30100618
Protein Pept Lett. 2012 Apr;19(4):411-21
pubmed: 22185508
Sci Rep. 2019 May 24;9(1):7788
pubmed: 31127130
PLoS One. 2015 Sep 22;10(9):e0138540
pubmed: 26393355
Sci Rep. 2019 Mar 7;9(1):3890
pubmed: 30846745
New Phytol. 2015 Apr;206(2):709-25
pubmed: 25581169
J Exp Bot. 2014 Mar;65(5):1259-70
pubmed: 24520019
Front Plant Sci. 2019 Feb 08;10:95
pubmed: 30800137
J Plant Physiol. 2004 Jan;161(1):63-8
pubmed: 15002665
Plant Cell. 2009 Feb;21(2):642-54
pubmed: 19244141
Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):9200-9205
pubmed: 28784763
J Cell Sci. 2010 May 1;123(Pt 9):1468-79
pubmed: 20375061
Arch Biochem Biophys. 1968 Apr;125(1):189-98
pubmed: 5655425
Planta. 1989 Jan;177(1):116-20
pubmed: 24212279
Trends Plant Sci. 2006 Jan;11(1):15-9
pubmed: 16359910
Biol Res. 2016 Jul 02;49(1):30
pubmed: 27370650
Ann Bot. 2003 Jan;91 Spec No:179-94
pubmed: 12509339
Crit Rev Biochem Mol Biol. 2000;35(4):253-89
pubmed: 11005202
Mol Genet Genomics. 2023 May;298(3):777-789
pubmed: 37041390
J Exp Bot. 2014 Mar;65(4):1051-68
pubmed: 24420566
Plant Physiol. 1989 Dec;91(4):1527-34
pubmed: 16667212
Plant Physiol. 2001 Dec;127(4):1781-7
pubmed: 11743121

Auteurs

Faisal Mehdi (F)

Sugarcane Research Institute, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Yunnan Academy of Agricultural Sciences, Kaiyuan, China.
Agriculture and Agribusiness Management, University of Karachi, Karachi, Pakistan.
Dr. A. Q. Khan Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan.

Xinlong Liu (X)

Sugarcane Research Institute, Yunnan Key Laboratory of Sugarcane Genetic Improvement, Yunnan Academy of Agricultural Sciences, Kaiyuan, China.
National Key Laboratory for Biological Breeding of Tropical Crops, Yunnan Academy of Agricultural Sciences, Kunming, China.

Zunaira Riaz (Z)

Agriculture and Agribusiness Management, University of Karachi, Karachi, Pakistan.

Urooj Javed (U)

Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan.

Afsheen Aman (A)

Dr. A. Q. Khan Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan.

Saddia Galani (S)

Dr. A. Q. Khan Institute of Biotechnology and Genetic Engineering (KIBGE), University of Karachi, Karachi, Pakistan.

Classifications MeSH