A Surface Matrix of Au NPs Decorated Graphdiyne for Multifunctional Laser Desorption/Ionization Mass Spectrometry.
energy conversion
graphdiyne
internal electric field
sulfacetamide
surface-assisted laser desorption ionization mass spectrometry
Journal
ACS applied materials & interfaces
ISSN: 1944-8252
Titre abrégé: ACS Appl Mater Interfaces
Pays: United States
ID NLM: 101504991
Informations de publication
Date de publication:
31 Oct 2023
31 Oct 2023
Historique:
medline:
1
11
2023
pubmed:
1
11
2023
entrez:
1
11
2023
Statut:
aheadofprint
Résumé
The development of the valid strategy to enhance laser desorption/ionization efficiency gives rise to widespread concern in surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) technology. Herein, a hybrid of Au NP-decorated graphdiyne (Au/GDY) was fabricated and employed as the SALDI-MS matrix for the first time, and a mechanism based on photothermal and photochemical energy conversions was proposed to understand LDI processes. Given theoretical simulations and microstructure characterizations, it was revealed that the formation of a coupled thermal field and internal electric field endow the as-prepared Au/GDY matrix with superior desorption and ionization efficiency, respectively. Moreover, laser-induced matrix ablation introduced strain and defect level into the Au/GDY hybrid, suppressing the recombination of charge carriers and thereby facilitating analyte ionization. The optimized Au/GDY matrix allowed for reliable detection of trace sulfacetamide and visualization of exogenous/endogenous components in biological tissues. This work offers an integrated solution to promote LDI efficiency based on collaborative photothermal conversion and internal electric field, and may inspire the design of novel semiconductor-based surface matrices.
Identifiants
pubmed: 37909321
doi: 10.1021/acsami.3c08962
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM